The dielectric properties of biological tissues: I. Literature survey

C Gabriel, S Gabriel† and E Corthout
Physics Department, King's College, Strand, London WC2R 2LS, UK

Received 2 April 1996

Abstract. The dielectric properties of tissues have been extracted from the literature of the past five decades and presented in a graphical format. The purpose is to assess the current state of knowledge, expose the gaps there are and provide a basis for the evaluation and analysis of corresponding data from an on-going measurement programme.

1. Introduction

The study of the dielectric properties of tissues belongs to basic as well as applied science. The theoretical aspects and the main findings in this subject have been widely reviewed (Schwan 1957, Schwan and Foster 1980, Pethig 1984, Pethig and Kell 1987, Foster and Schwan 1989 and Stuchly and Stuchly 1980). Foster and Schwan reflect on the historical perspective provided by over 100 years of interest in the electrical properties of tissues, and review the basic concepts of dielectric phenomena in biological materials and their interpretation in terms of interactions at the cellular level. Pethig and Kell cover similar ground and provide an overview of theories formulated to explain the dielectric properties in terms of the underlying molecular processes. Common to all papers is a more or less extensive tabulation of dielectric properties of tissues selected to illustrate the theoretical deliberations provided by the authors. More extensive literature reviews of dielectric properties have been provided by Geddes and Baker (1967), who summarized the early reports on the specific resistance of tissues; Stuchly and Stuchly (1980), who tabulated the dielectric properties of tissues in the frequency range 10 kHz to 10 GHz; and Duck (1990), who extended the survey by including more recent data.

The purpose of this survey is to assess the current state of knowledge in terms of dielectric properties of tissues over ten frequency decades, expose the gaps there are and provide a basis for the evaluation and analysis of the data from an on-going measurement programme (Gabriel et al 1996a, b).

The present study was instigated by the need for such information in electromagnetic (em) dosimetry. This area of science deals with the simulation of em exposure situations and the calculation of internal fields within exposed structures. Recent developments in this field have produced high-resolution, anatomically correct man and animal models from medical imaging data (Dimbylow 1996). The level of detail is such that over 30 tissue types can be identified. The use of such models for em dosimetry require that dielectric

† Present address: Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK.
properties be allocated to the various tissues at all the frequencies to which the model is exposed. There is, as yet, no consensus on the dielectric data. This paper is a first step towards achieving this objective.

2. Overview of dielectric properties: terms and definitions

The dielectric properties of materials are obtained from their measured complex relative permittivity, \(\hat{\varepsilon} \), expressed as

\[
\hat{\varepsilon} = \varepsilon' - j\varepsilon''
\]

where \(\varepsilon' \) is the relative permittivity of the material and \(\varepsilon'' \) the out-of-phase loss factor associated with it such that

\[
\varepsilon'' = \sigma/\varepsilon_0\omega.
\]

\(\sigma \) is the total conductivity of the material which, depending on the nature of the sample, may include a contribution from a frequency-independent ionic conductivity, \(\sigma_i \). In this expression, \(\varepsilon_0 \) is the permittivity of free space and \(\omega \) the angular frequency of the field. The SI unit of conductivity is siemens per metre (S m\(^{-1}\)) which presumes that in the above expression \(\varepsilon_0 \) is expressed in farads per metre (F m\(^{-1}\)) and \(\omega \) in radians per second. The dielectric properties are determined as \(\varepsilon' \) and \(\varepsilon'' \) values, or \(\varepsilon' \) and \(\sigma \) values, as a function of frequency.

The dielectric properties of a biological tissue result from the interaction of electromagnetic radiation with its constituents at the cellular and molecular level. The mechanisms of the interaction are well understood and discussed in the review articles mentioned in the previous section. Very briefly, the main features of the dielectric spectrum of a biological tissue are as follows:

- The relative permittivity of a tissue may reach values of up to \(10^6 \) or \(10^7 \) at frequencies below 100 Hz.
- It decreases at high frequencies in three main steps known as the \(\alpha \), \(\beta \) and \(\gamma \) dispersions. Other dispersions may also be present.
 - The \(\gamma \) dispersion, in the gigahertz region, is due to the polarization of water molecules.
 - The \(\beta \) dispersion, in the hundreds of kilohertz region, is due mainly to the polarization of cellular membranes which act as barriers to the flow of ions between the intra and extra cellular media. Other contributions to the \(\beta \) dispersion come from the polarization of protein and other organic macromolecules.
 - The low frequency \(\alpha \) dispersion is associated with ionic diffusion processes at the site of the cellular membrane.
- Tissues have finite ionic conductivities commensurate with the nature and extent of their ionic content and ionic mobility.

3. Review of the dielectric properties of tissues

Reports of dielectric properties of tissues prior to 1950 are difficult to get hold of; they are of more historical than practical interest and, with the exception of Osswald (1937), are not reported in this article. The literature in the 1950s and 1960s is dominated by the work of Schwan and his collaborators and has been extensively reviewed and tabulated by Durney et al (1986).
The data reported are those that correspond more closely to living human tissues. Consequently, human tissue and in vivo measurements were selected in preference to animal tissue and in vitro. For in vitro measurements, data obtained at temperatures closest to that of the body and nearest to the time after death were used when available.

Most of the literature data were in graphical rather than tabular form, and in a logarithmic rather than linear format. Such data were retrieved for each decade. When tables were available, a more extensive frequency range was often provided. The data were translated from the various authors’ preferred set of parameters and units to relative permittivity and conductivity expressed in S m$^{-1}$.

Data obtained at temperatures as low as 20°C are included in this survey. It was not considered advisable to translate them to body temperature. The temperature coefficients, for both permittivity and conductivity, are tissue-type and frequency dependent. Information on these coefficients is scarce and not sufficiently robust to warrant generalization and extrapolation. Moreover, the coefficients are highest (∼1–2% °C$^{-1}$) at low frequencies where the uncertainties and the scatter in the data are also high.

4. Presentation of data

The data are presented in a graphical format in order to highlight the information with respect to the frequency coverage and the scatter in the data. Details of the tissue, measurement temperature and the reference are included in the legend. To facilitate the comparison, the same scale is used for all tissues except where the conductivity of the tissue falls below 10^{-2} S m$^{-1}$.

The plot for blood (figure 1(a)) benefits from recent high frequency data extending to 90 GHz (Alison and Sheppard 1993). The two types of bone: cancellous (figure 1(b)) and cortical (figure 1(c)) were treated separately; some authors reported measurement in the longitudinal, transverse and radial directions; in such cases the average is reported. There are large systematic differences between data for fat from various origins (figure 1(d)); there are almost certainly due to naturally wide variations in sample composition leading certain authors to publish a range of values rather than an average (Schwan 1955, Land and Campbell 1992). Both the grey and white matter of the brain have been widely studied in the frequency range above 10 kHz (figures 1(e) and (f)). This is also the case for kidney (figure 1(g)) and spleen (figure 1(h)). By contrast, the few data sets for heart (figure 1(i)) are spread across ten frequency decades. The data for liver (figure 1(j)) extend over the same frequency range. The dielectric properties of lung tissue (figure 1(k)) depend on the degree of inflation and therefore vary with the physical state. In the case of muscle tissue, the dielectric properties are known to be anisotropic at frequencies below 10 MHz; the literature data reflect this property. Figure 1(l) shows all the data for muscle tissue including those for which no orientation is specified. Skin (figure 1(m)) is a laminar tissue in which the uppermost layer, the stratum corneum, is significantly less hydrated than the deeper granular tissue. The dielectric properties of composite skin would fall within the bounds formed by the two components.

5. Comments

The review includes all the main tissues for which there are three or more literature reports. The list is much shorter than what is needed to provide data for state-of-the-art voxel models used in theoretical dosimetry, in which many more tissues are identified. Among the tissues
Figure 1. Survey of permittivity and conductivity of tissues in the frequency range 10 Hz to 100 GHz. (a) Blood.
Figure 1. (b) Bone cancellous.
Figure 1. (c) Bone cortical.
Figure 1. (d) Fat.
Figure 1. (e) Grey matter.
Figure 1. (f) White matter.
Figure 1. (g) Kidney.
Figure 1. (h) Spleen.
Figure 1. (i) Heart.
Figure 1. (j) Liver.
Figure 1. (k) Lung.
Figure 1. (l) Muscle.
Figure 1. (m) Skin.
Dielectric properties of biological tissues I

of the head, brain is well characterized above 100 kHz, but data for dura, cerebrospinal fluid and cartilage are not reported at all. For most tissues the data below 100 kHz are either very limited or non-existent. This omission is not a reflection of the interest in such data but a limitation imposed by measurement techniques not designed to cope with well known sources of systematic errors at low frequencies. Data for tissues such as muscle are well characterized in terms of number of reports, but illustrate the spread in values from studies that extend over limited frequency ranges. Averaging the values available at each frequency will distort the frequency dependence, which is best determined by measuring a sample across the whole range. These issues are addressed in the following two papers (Gabriel et al 1996a, b).

Acknowledgments

The authors wish to acknowledge Professor E H Grant for his help and encouragement. This project was supported by the US Air Force under contract F49620-93-1-0561.

References

Bhattacharjee A B, Chaudhury K and Bajaj M M 1995 The dielectric parameters of skin tissues and their change during thermal burn injuries between one and 100 MHz Physica Medica 11 27–32
Burdette E C, Cain F L and Seals J 1980 In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies IEEE Trans. Microwave Theory Techn. 28 414–27
Cook H F 1951 The dielectric behaviour of some types of human tissues at microwave frequencies Br. J. Appl. Phys. 2 295–300
Edrich J and Hardee P C 1976 Complex permittivity and penetration depth of muscle and fat tissues between 40 and 90 GHz IEEE Trans. Microwave Theory Techn. 25 273–5
England T S 1950 Dielectric properties of the human body for wavelengths in the 1–10 cm range Nature 166 480–1

Kraszewski A, Stuchly S S, Stuchly M A and Smith A M 1982 In vivo and in vitro dielectric properties on animal tissues at radio frequencies Bioelectromagnetics 3 421–32

Osswald K 1937 Messung der Leitfahigkeit und Dielektrizitatkonstante biologischer Gewebe und Flussigkeiten bei kurzen Wellen Hochfrequenz Tech. Elektroakustik 49 40–50

Saha S and Williams P A 1989 Electric and dielectric properties of wet human cancellous bone as a function of frequency Annals of Biomedical Engineering 17 143–58

Schwan H P 1955 Application of UHF impedance measuring techniques in biophysics IRE Transactions on Instrumentation PG14 75–83

——1956 Electrical properties measured with alternating currents; body tissues Handbook of Biological Data ed W S Spector (Philadelphia: W B Saunders Co)

——1963 Electrical characteristics of tissues: A survey Biophysik 1 198–208

Schwan H P and Foster K R 1977 Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water Biophysical Journal 17 193–7

——1980 RF-Field interactions with biological systems: Electrical properties and biophysical mechanisms Proc. of the IEEE 68 104–13

Dielectric properties of biological tissues I

Stoy D, Foster K R and Schwan H P 1982 Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data Phys. Med. Biol. 27 501–13

Stuchly M A 1981 Dielectric properties of animal tissues in vivo at frequencies 10 MHz–1 GHz Bioelectromagnetics 1 93–103

——1986b Postmortem changes of the dielectric properties of bovine brain tissues at low radiofrequencies Bioelectromagnetics 7 31–43

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门ADS学习培训课程。课程是具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家…

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训教程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html
CST 学习培训课程套装

该培训套装由易迪拓培训联合微波EDA网共同推出，是最全面、系统、专业的CST微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习CST微波工作的各项功能及其在微波射频、天线设计等领域中的设计应用。且购买该套装，还可超值赠送3个月免费学习答疑...

HFSS 天线设计培训课程套装

套装包含6门视频课程和1本书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了HFSS天线设计的全过程，是国内最全面、最专业的HFSS天线设计课程，可以帮助您快速学习掌握如何使用HFSS设计天线，让天线设计不再难...

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID线圈天线设计培训课程套装

套装包含4门视频培训课程，培训将13.56MHz线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了13.56MHz线圈天线的工作原理、设计方法、设计考量以及使用HFSS和CST仿真分析线圈天线的具体操作，同时还介绍了13.56MHz线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握13.56MHz线圈天线及其匹配电路的原理、设计和调试...

我们的课程优势：

※ 成立于2004年，10多年丰富的行业经验，
※ 一直致力于专注微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波EDA网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com