A Low Noise Figure 1.2-V CMOS GPS Receiver
Integrated as a Part of a Multimode Receiver

Mikael Gustafsson, Aarno Pärssinen, Patrik Björksten¹, Mika Mäkitalo, Arttu Uusitalo, Sami Kallioinen, Juha Hallivuori, Petri Korpi, Sami Rintamäki, Ilkka Urvas, Tuomas Saarela and Tero Suhonen²
Nokia
Helsinki, Finland
mikael.gustafsson@nokia.com
¹Now with Texas Instruments, Espoo, Finland
²Now with Bitboys, Espoo, Finland

Abstract—This paper presents the designed and measured performance of a Global Positioning System (GPS) receiver chain integrated as a part of a multi-band and multimode receiver, designed for global system for mobile communications (GSM) and wideband code division multiple access (WCDMA). Adding an additional mode to a receiver with minor changes to the implementation is discussed. The IC is implemented in a 0.13-µm CMOS technology without any analog options. At 1.2-V supply voltage and total power dissipation of 49 mW for the analog signal path, the proposed GPS receiver features a noise figure of 2.2 dB.

I. INTRODUCTION
There is an increasing demand for mobile devices supporting several wireless communication systems in the mobile communication market [1]. This also sets pressure for lower power, higher integration and lower cost for the radio implementation, and moreover for combining requirements of several standards to single RF ASIC specification [2]. Recent CMOS implementations show the capability to single-chip radio integration [3],[4], and high performance at low supply voltages [5]. Also multiple radio systems can share the hardware if interworking schemes allow it [6]. The motivation to combine wideband code division multiple access (WCDMA) and global system for mobile communications (GSM) signal path with Global Positioning System (GPS) can come from two issues. First, the GPS can be combined with diversity branch if such is used in the reception, and second the modifications in ASIC design may be so minor that it is more efficient way of developing the solution.

In this paper we both increase the level of RF integration combining analog and digital circuitry on the same ASIC and combine the requirements of several radio standards in the same signal processing paths i.e. receiver chains. We describe how a GPS mode [7] can be added to a receiver supporting GSM and WCDMA systems, with only minor additions and changes to the circuitry. As a result, the GPS receiver demonstrates the state-of-the-art performance with low power consumption. This paper is structured so that the system requirements and architecture of a GPS receiver is presented in Section II. In Section III, the needed changes to the different building blocks are presented. Measured performance and conclusions follow in Sections IV and V, respectively.

II. GPS RECEIVER

A. System Requirements
The GPS system differs from the cellular systems in many ways. In GPS we only need to support one channel of reception. It has no adjacent channels to be filtered and no hard linearity and blocker requirements from the system point of view. A wide enough channel width ensures the reception of additional side lobes, which reduces the needed acquisition time in GPS reception. The received signal can be quite small and a good sensitivity is needed, setting a low noise figure (NF) requirement, which results in a reasonable high gain requirement for the receiver compared to GSM and WCDMA modes. The GPS L1 band of choice (1575.42 MHz) is in the middle of the high and low cellular bands.

The GPS system requirements get immediately harder when it needs to work in a mobile terminal environment. GPS system specification has internally no hard linearity and blocker requirements but looking at the operation environment, a mobile phone application poses a set of additional requirements to the receiver. In a mobile device there maybe quite many other radios operating simultaneously. The intermodulation distortion products of those can be quite harmful for the GPS reception. Adding additional filtering between the antenna and RF IC is not wanted. An additional band filter would cause, with the added losses, undesired increase in the noise figure. So an additional low-noise amplifier (LNA) would then be needed.
for complying to the noise figure requirement, which again reduces the receiver linearity with the added gain. Final solution would be very expensive and bulky. A better way is to have good enough off-band linearity in the fully integrated receiver.

B. Receiver Architecture

The direct conversion receiver architecture has been chosen for the high integration possibilities. The direct conversion receiver is also suitable for integrating different systems because no complex frequency planning is needed and the building blocks are relative easy to be made suitable for supporting different modes and therefore can be reused for gaining die area and design work. All systems set different requirements for the receiver, such as gain, noise figure, linearity and adjacent channel selectivity. Need of supporting system specific requirements combined to wide band operation sets naturally very demanding building block specification compared to only supporting single band and mode. In a CMOS direct conversion receiver the biggest challenge is to have a low 1/f noise in GSM and high linearity inside the system in WCDMA. The GPS mode sets stringent requirements for the noise, as also for the off-band linearity. Typical requirements for noise and linearity referred to LNA input are given in Table I. The most challenging off-band linearity cases for GPS were found to be the intermodulation distortion product of Bluetooth & GSM850.

III. RECEIVER BUILDING BLOCKS

The building blocks were designed taken GSM and WCDMA requirements into account. The multi-band requirements are also considered in the designing of some of the blocks where the added frequency range is needed even if perhaps not every block supports every band in this implementation. The aim is to reuse the building blocks as much as possible between systems and bands. The reuse restricts the receiver to only be operational at one system at a time. The receiver architecture is shown in Fig. 1.

A. LNA

Frequency specific antennas and band specific system filters set the requirement for own inputs in the LNA for each frequency band. The reason for this is that switches in the signal path are unwanted especially in GPS, because of the added loss and nonlinearity. Therefore separate input stages are combined after cascode devices. The LNA structure is shown in Fig. 2. The load resonators consist of tunable LC-tanks. Because the major interference and blocker signals are out-of-band signals, some additional filtering can be achieved by having high Q values in the matching and load resonator. This is the reason why the GPS LNA signal path is completely separate from the other bands. There is a capacitor matrix in the resonator for adjusting the process variation, which is an inherent issue with high Q resonators.

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>GSM</th>
<th>WCDMA</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IIP3</td>
<td>-19</td>
<td>-10</td>
<td>-</td>
</tr>
<tr>
<td>IMD3 (PCS & 802.11a)</td>
<td>-</td>
<td>-</td>
<td>-120 dBm</td>
</tr>
<tr>
<td>IMD2 (Bluetooth & GSM850)</td>
<td>-</td>
<td>-</td>
<td>-120 dBm</td>
</tr>
</tbody>
</table>

B. Downconversion Mixer

The downconversion mixer is common for all modes and bands. It consists of separate input stages, which are combined to the switching core transistors resulting in combined outputs for the analog baseband circuit, shown in Fig. 3. Two low area differential coils are needed in the mixers for achieving low flicker noise for GSM [3], [9]. The mixer resonator has a capacitor matrix for tuning slightly the center frequency for the GPS frequency band. This resonator helps also in off-band linearity cases.

Figure 1. Block diagram of the receiver

Figure 2. Schematics of the LNA
The analog baseband circuit, shown in Fig. 4., could use the same approach as given in [10]. The circuit is a 2nd order Chebyshev active-RC low-pass filter with an additional passive pole in the front of the filter. The gain adjustment is made by adjusting the input resistors (RINN, RINP) while the nominal gains for the different modes is set with the filter resistors (R1-R3). Filter bandwidth selection and process variation tuning of the corner frequency is controlled with the tunable integrator capacitors (C1-C2). The capacitor matrix is the same for all modes. The wideband mode for GPS was added to the design simply by dividing the WCDMA capacitors by two. Additional gain adjustment was done by adding more control range into the input resistors.

D. ADC and Digital Frond-end

The analog-to-digital converter (ADC) is based on a \(\Sigma \Delta \)-modulator topology [11], [12]. The structure of the modulator is a 1-bit, 2-2 cascade topology. Mode selection is made by selecting suitable sampling clock modes. The GPS could use directly the WCDMA mode, which has the highest sampling rate of 153.6MS/s. The dynamic range will decrease in the wide bandwidth GPS mode compared to WCDMA because of the noise shaping in the \(\Sigma \Delta \)-modulator. This is not a problem in GPS because there are no adjacent channel selectivity requirements and the limited dynamic range is handled by appropriate gain adjustments.

The digital frond-end consists of final filtering and scaling in the digital domain. These functions can easily be programmable to different modes.

E. Synthesizer

The different modes and bands set hard requirement on the voltage-controlled oscillator (VCO) and phase-locked loop (PLL). It is a demanding task to design only one single VCO complying for all different phase noise requirements over the large frequency range. In the receiver the frequency generation is divided between two VCO’s taken also the low-band cellular system requirements into account. The receiver uses a divide-by-2 and a divide-by-4 for getting the right local oscillator signals to the downconversion mixers. The GPS phase noise requirements are not demanding, the only challenge is getting the right frequency generated. The divide-by-2 is used for generating the GPS LO.

In the receiver a fractional PLL is employed, which can easily be used for generating the wanted frequency from any available reference frequency.

IV. Experimental Results

The circuit was fabricated using a 0.13-µm CMOS process, using a 1.2-V power supply and no analog process options. It was mounted to a ball-grid-array (BGA) package and measured with an off-chip surface-mounted-device (SMD) balun. The off-chip balun used in the measurements has a typical loss of 0.7dB. The loss has been de-embedded from the results.

The measured performance of the GPS is summarized in Table II. The results presented here are from an analog measurement of the complete receiver from LNA input to analog baseband outputs. Implemented ASIC is shown in Fig. 5. and the measured spectrum of the GPS receiver after digital filtering in Fig. 6. The total area of the presented blocks is 6.6 mm\(^2\).
Figure 6. CW signal measured from digital filter outputs

TABLE II. GPS RECEIVER MEASURED RESULTS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>Icc</td>
<td>41</td>
<td>mA</td>
</tr>
<tr>
<td>Av</td>
<td>68.2</td>
<td>dB</td>
</tr>
<tr>
<td>NF</td>
<td>2.2</td>
<td>dB</td>
</tr>
<tr>
<td>IMD3 (PCS & 802.11a)</td>
<td>-141.5</td>
<td>dBm</td>
</tr>
<tr>
<td>IMD2 (Bluetooth & GSM850)</td>
<td>-122.5</td>
<td>dBm</td>
</tr>
</tbody>
</table>

One of the most important characteristics of a GPS receiver in a mobile terminal is how good the off-band linearity is. One band filter is assumed to be utilized in front of the RF IC part of the receiver for attenuating a large portion of the interference signals. The third-order intermodulation distortion is measured using two continuous wave (CW) signals, one representing a PCS signal with leaked power of -35 dBm and the second representing an 802.11a signal having a power of -22 dBm. The IMD3 component was measured to be -141.5 dBm, which is low enough for not disturbing the GPS reception. The second-order intermodulation signal was measured to be -122.5 dBm, which also is low enough not to deteriorate the reception.

V. CONCLUSIONS

We have presented an implementation having necessary changes for adding a GPS mode to a multimode CMOS receiver. The changes and additional circuitry are relatively small. The biggest changes are applied to the RF part of the circuitry for having wide enough bandwidth in the VCO and dedicated inputs in the LNA. The design of a CMOS multimode and multi-band receiver requires more attention in architectural and system design. Extra effort is required on the receiver building blocks for complying with the different requirements from all systems. With careful design the receiver can reach a state-of-the-art performance with low power consumption. We demonstrated a GPS receiver designed for the hostile environment in a mobile device having a very low NF of 2.2 dB and good off-band linearity for being immune for the most severe interference signals in a mobile terminal.

ACKNOWLEDGEMENT

We wish to thank Kyllikki Aitamäki and Panu Siukonen of Nokia Research Center for the layout and measurement support.

REFERENCES

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养; 我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评，并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装
该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求...

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装
该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门ADS学习培训课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家...

HFSS 学习培训课程套装
该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训教程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅...

课程网址：http://www.edatop.com/peixun/hfss/11.html
CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作室的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：

※ 成立于 2004 年，10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com