An Overview of Fractal Antenna Engineering Research

Douglas H. Werner¹ and Suman Ganguly²

¹Communications and Space Sciences Laboratory, Department of Electrical Engineering
The Pennsylvania State University, University Park, PA 16802 USA
Tel: +1 (814) 863-2946; E-mail: dhw@psu.edu

²Center For Remote Sensing, Inc.
11350 Random Hills Rd., Suite 710, Fairfax, VA 22030 USA
Tel: +1 (703) 385-7717; E-mail: remote703@aol.com

Abstract

Recent efforts by several researchers around the world to combine fractal geometry with electromagnetic theory have led to a plethora of new and innovative antenna designs. In this report, we provide a comprehensive overview of recent developments in the rapidly growing field of fractal antenna engineering. Fractal antenna engineering research has been primarily focused in two areas: the first deals with the analysis and design of fractal antenna elements, and the second concerns the application of fractal concepts to the design of antenna arrays. Fractals have no characteristic size, and are generally composed of many copies of themselves at different scales. These unique properties of fractals have been exploited in order to develop a new class of antenna-element designs that are multi-band and/or compact in size. On the other hand, fractal arrays are a subset of thinned arrays, and have been shown to possess several highly desirable properties, including multi-band performance, low sidelobe levels, and the ability to develop rapid beamforming algorithms based on the recursive nature of fractals. Fractal elements and arrays are also ideal candidates for use in reconfigurable systems. Finally, we will provide a brief summary of recent work in the related area of fractal frequency-selective surfaces.

Keywords: Fractals; electrodynamics; antennas; antenna theory; antenna arrays; frequency selective surfaces; multi-band antennas; log periodic antennas; miniature antennas; antenna radiation patterns

1. Introduction

There has been an ever-growing demand, in both the military as well as the commercial sectors, for antenna designs that possess the following highly desirable attributes:

1. Compact size
2. Low profile
3. Conformal
4. Multi-band or broadband

There are a variety of approaches that have been developed over the years, which can be utilized to achieve one or more of these design objectives. For instance, an excellent overview of various useful techniques for designing compact (i.e., miniature) antennas may be found in [1] and [2]. Moreover, a number of approaches for designing multi-band (primarily, dual-band) antennas have been summarized in [3]. Recently, the possibility of developing antenna designs that exploit in some way the properties of fractals to achieve these goals, at least in part, has attracted a lot of attention.

The term fractal, which means broken or irregular fragments, was originally coined by Mandelbrot [4] to describe a family of complex shapes that possess an inherent self-similarity or self-affinity in their geometrical structure. The original inspiration for the development of fractal geometry came largely from an in-depth study of the patterns of nature. For instance, fractals have been successfully used to model such complex natural objects as galaxies, cloud boundaries, mountain ranges, coastlines, snowflakes, trees, leaves, ferns, and much more. Since the pioneering work of Mandelbrot and others, a wide variety of applications for fractals continue to be found in many branches of science and engineering. One such area is fractal electrodynamics [5-11], in which fractal geometry is combined with electromagnetic theory for the purpose of investigating a new class of radiation, propagation, and scattering problems. One of the most promising areas of fractal-electrodynamics research is in its application to antenna theory and design.

Traditional approaches to the analysis and design of antenna systems have their foundation in Euclidean geometry. There has been a considerable amount of recent interest, however, in the possibility of developing new types of antennas that employ fractal rather than Euclidean geometric concepts in their design. We refer to this new and rapidly growing field of research as fractal antenna engineering. Because fractal geometry is an extension of classical geometry, its recent introduction provides engineers with the unprecedented opportunity to explore a virtually limitless number of previously unavailable configurations for possible use in the development of new and innovative antenna designs. There...
are primarily two active areas of research in fractal antenna engineering. These include: 1.) the study of fractal-shaped antenna elements, and 2.) the use of fractals in the design of antenna arrays. The purpose of this article is to provide an overview of recent developments in the theory and design of fractal antenna elements, as well as fractal antenna arrays. The related area of fractal frequency-selective surfaces will also be considered in this article.

We note that there are a number of patents on fractal antenna designs that have been filed and awarded in recent years. The purpose of this article, however, is to present an overview of letters and papers published in technical journals that deal with the subject of fractal antenna engineering. Therefore, the contents of specific patents will not be discussed here. The interested reader is encouraged to search the various patent databases for this information.

2. Some Useful Geometries for Fractal Antenna Engineering

This section will present a brief overview of some of the more common fractal geometries that have been found to be useful in developing new and innovative designs for antennas. The first fractal that will be considered is the popular Sierpinski gasket [12]. The first few stages in the construction of the Sierpinski gasket are shown in Figure 1. The procedure for geometrically constructing this fractal begins with an equilateral triangle contained in the plane, as illustrated in Stage 0 of Figure 1. The next step in the construction process (see Stage 1 of Figure 1) is to remove the central triangle with vertices that are located at the midpoints of the sides of the original triangle, shown in Stage 0. This process is then repeated for the three remaining triangles, as illustrated in Stage 2 of Figure 1. The next two stages (i.e., Stages 3 and 4) in the construction of the Sierpinski gasket are also shown in Figure 1. The Sierpinski-gasket fractal is generated by carrying out this iterative process an infinite number of times. It is easy to see from this definition that the Sierpinski gasket is an example of a self-similar fractal. From an antenna engineering point of view, a useful interpretation of Figure 1 is that the black triangular areas represent a metallic conductor, whereas the white triangular areas represent regions where metal has been removed.
Another popular fractal is known as the Koch snowflake [12]. This fractal also starts out as a solid equilateral triangle in the plane, as illustrated in Stage 0 of Figure 2. However, unlike the Sierpinski gasket, which was formed by systematically removing smaller and smaller triangles from the original structure, the Koch snowflake is constructed by adding smaller and smaller triangles to the structure in an iterative fashion. This process is clearly represented in Figure 2, where the first few stages in the geometrical construction of a Koch snowflake are shown.

A number of structures based on purely deterministic or random fractal trees have also proven to be extremely useful in developing new design methodologies for antennas and frequency-selective surfaces. An example of a deterministic ternary (three-branch) fractal tree is shown in Figure 3. This particular ternary-tree structure is closely related to the Sierpinski gasket shown in Figure 1. In fact, the ternary-tree geometry illustrated in Figure 3 can be interpreted as a wire equivalent model of the Stage 4 Sierpinski gasket shown in Figure 1.

The space-filling properties of the Hilbert curve and related curves make them attractive candidates for use in the design of fractal antennas. The first four steps in the construction of the Hilbert curve are shown in Figure 4 [12]. The Hilbert curve is an example of a space-filling fractal curve that is self-avoiding (i.e., has no intersection points).

Some of the more common fractal geometries that have found applications in antenna engineering are depicted in Figure 5. The Koch snowflakes and islands have been primarily used to develop new designs for miniaturized-loop as well as microstrip-patch antennas. New designs for miniaturized dipole antennas have also been developed based on a variety of Koch curves and fractal trees. Finally, the self-similar structure of Sierpinski gaskets and carpets has been exploited to develop multi-band antenna elements.

3. Iterated Function Systems: The Language of Fractals

Iterated function systems (IFS) represent an extremely versatile method for conveniently generating a wide variety of useful
fractal structures [12, 13]. These iterated function systems are based on the application of a series of affine transformations, \(w \), defined by
\[
\begin{align*}
\begin{pmatrix} x \\ y \end{pmatrix} &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix},
\end{align*}
\] (1)
or, equivalently, by
\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by + e, cx + dy + f \end{pmatrix},
\] (2)
where \(a, b, c, d, e, \) and \(f \) are real numbers. Hence, the affine transformation, \(w \), is represented by six parameters
\[
\begin{pmatrix} a & b & e \\ c & d & f \end{pmatrix},
\] (3)
such that \(a, b, c, \) and \(d \) control rotation and scaling, while \(e \) and \(f \) control linear translation.

Now suppose we consider \(w_1, w_2, \ldots, w_N \) as a set of affine linear transformations, and let \(A \) be the initial geometry. Then a new geometry, produced by applying the set of transformations to the original geometry, \(A \), and collecting the results from \(w_1(A), w_2(A), \ldots, w_N(A) \), can be represented by
\[
W(A) = \bigcup_{n=1}^{N} w_n(A),
\] (4)
where \(W \) is known as the Hutchinson operator [12]. A fractal geometry can be obtained by repeatedly applying \(W \) to the previous geometry. For example, if the set \(A_0 \) represents the initial geometry, then we will have
\[
A_0 = W(A_0), \quad A_1 = W(A_0), \quad \ldots, \quad A_{k+1} = W(A_k).
\] (5)

An iterated function system generates a sequence that converges to a final image, \(A_\infty \), in such a way that

Figure 6. The standard Koch curve as an iterated function system (IFS).

Figure 7. The first four stages in the construction of the standard Koch curve via an iterated function system (IFS) approach. The transformation is applied for each iteration to achieve higher levels of fractalization.

\[W(A_\infty) = A_\infty. \] (6)

This image is called the attractor of the iterated function system, and represents a “fixed point” of \(W \).

Figure 6 illustrates the iterated function system procedure for generating the well-known Koch fractal curve. In this case, the initial set, \(A_0 \), is the line interval of unit length, i.e., \(A_0 = \{ x : x \in [0, 1] \} \). Four affine linear transformations are then applied to \(A_0 \), as indicated in Figure 6. Next, the results of these four linear transformations are combined together to form the first iteration of the Koch curve, denoted by \(A_1 \). The second iteration of the Koch curve, \(A_2 \), may then be obtained by applying the same four affine transformations to \(A_1 \). Higher-order versions of the Koch curve are generated by simply repeating the iterative process until the desired resolution is achieved. The first four iterations of the Koch curve are shown in Figure 7. We note that these curves would converge to the actual Koch fractal, represented by \(A_\infty \), as the number of iterations approaches infinity.

Iterated function systems have proven to be a very powerful design tool for fractal antenna engineers. This is primarily because they provide a general framework for the description, classification, and manipulation of fractals [13]. In order to further illustrate this important point, the iterated function system code for such diverse objects as a Sierpinski gasket and a fractal tree have been provided in Figure 8 and Figure 9, respectively [12].

![Figure 8. The iterated function system code for a Sierpinski gasket.](image)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.500</td>
<td>0.500</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.500</td>
<td>0.000</td>
<td>0.500</td>
</tr>
</tbody>
</table>

![Figure 9. The iterated function system code for a fractal tree.](image)

4. Fractal Antenna Elements

4.1 Early Work on Fractal Loop, Dipole, and Monopole Antennas

Apparently, the earliest published reference to use the terms fractal radiator and fractal antenna to denote fractal-shaped antenna elements appeared in May, 1994 [14]. Prior to this, the terminology had been introduced publicly during an invited IEEE seminar held at Bucknell University in November, 1993 [15]. The application of fractal geometry to the design of wire antenna elements was first reported in a series of articles by Cohen [16-19]. These articles introduce the notion of fractalizing the geometry of a standard dipole or loop antenna. This is accomplished by systematically bending the wire in a fractal way, so that the overall arc length remains the same, but the size is correspondingly reduced with the addition of each successive iteration. It has been demonstrated that this approach, if implemented properly, can lead to efficient miniaturized antenna designs. For instance, the radiation characteristics of Minkowski dipoles and Minkowski loops were originally investigated in [16-19]. Properties of the Koch fractal monopole were later considered in [20, 21]. It was shown that the electrical performance of Koch fractal monopoles is superior to that of conventional straight-wire monopoles, especially when operated in the small-antenna frequency regime. A fast approximation technique for evaluating the radiation characteristics of the Koch fractal dipole was presented in [22]. Monopole configurations with fractal top-loads have also been considered in [23, 24].
Figure 10a. Variations of the Sierpinski gasket and related multi-band monopole antennas: a multi-triangular monopole

Figure 10b. Variations of the Sierpinski gasket and related multi-band monopole antennas: a standard Sierpinski monopole with $\alpha = 60^\circ$ and $\delta = 2$.

Figure 10c. Variations of the Sierpinski gasket and related multi-band monopole antennas: a Sierpinski monopole with $\alpha = 90^\circ$ and $\delta = 2$.

Figure 10d. Variations of the Sierpinski gasket and related multi-band monopole antennas: a Sierpinski monopole with $\alpha = 60^\circ$ and $\delta = 1.5$.

Figure 10e. Variations of the Sierpinski gasket and related multi-band monopole antennas: a mod-3 Sierpinski monopole.

Figure 10f. Variations of the Sierpinski gasket and related multi-band monopole antennas: a mod-5 Sierpinski monopole.
as an alternative technique for achieving size miniaturization. Finally, the effects of various types of symmetries on the performance of Koch dipole antennas were studied by Cohen [25, 26].

4.2 Research on Sierpinski Gasket Antennas

A multi-band fractal monopole antenna, based on the Sierpinski gasket, was first introduced by Puente et al. [27, 28]. The original Sierpinski monopole antenna is illustrated in Figure 10b. In this case, the antenna geometry is in the form of a classical Sierpinski gasket, with a flare angle of $\alpha = 60^\circ$ and a self-similarity scale factor of $\delta = 2$. The dimensions for a prototype Sierpinski gasket monopole are given in Figure 11. Figure 11 also contains plots of simulated and measured values of the input reflection coefficient versus frequency for the antenna, along with the associated curves for input resistance and reactance. A scheme for modifying the spacing between the hands of the Sierpinski monopole was subsequently presented in [29], and later summarized in [11]. Figure 10d shows an example of a Sierpinski monopole antenna with a flare angle of $\alpha = 60^\circ$ and a self-similarity scale factor of $\delta = 1.5$. It was demonstrated in [29] that the positions of the multiple bands may be controlled by proper adjustment of the scale factor used to generate the Sierpinski antenna. The transient response of the multi-band Sierpinski monopole was investigated in [30]. This was accomplished by using a Method of Moments technique to solve the time-domain electric-field integral equation via a marching-on-in-time procedure. Linear parametric modeling techniques were also applied, in order to considerably reduce computation time. The dependence of the radiation characteristics of the Sierpinski monopole on flare angle was documented in [31]. Figure 10c shows an example of a Sierpinski monopole with a flare angle of $\alpha = 90^\circ$ and a self-similarity scale factor of $\delta = 2$. Further investigations concerning enhancing the performance of Sierpinski-gasket monopoles through perturbations in their geometry were reported in [32]. It was found that a variation in the flare angle of the antenna translated into a shift of the operating bands, as well as into a change in the input impedance and radiation patterns. Fast iterative network models that are useful for predicting the performance of Sierpinski fractal antennas were developed in [33-35]. The predicted self-similar surface-current distribution on a Sierpinski monopole antenna was verified in [36, 37] by using infra-red thermograms. Breden and Langley [38] presented measurements of input impedance and radiation patterns for several printed fractal antennas, including Koch and Sierpinski monopoles.

4.3 Research on Fractal Tree Antennas

The multi-band characteristics of a deterministic fractal tree structure were considered in [39]. On the other hand, the multi-band properties of random fractal tree-like antennas, created by an electrochemical deposition process, were investigated by Puente et al. [40]. It was found that these fractal tree antennas have a multi-band behavior with a denser band distribution than the Sierpinski antenna. The multi-band and wide-band properties of printed fractal branched antennas were studied in [41]. Werner et al. [42] considered the multi-band electromagnetic properties of thin-wire structures based on a ternary-tree fractal geometry. In particular, the impedance behavior of a tri-band ternary fractal tree was studied by carrying out a numerically rigorous Method of Moments...
Figure 17. A contour plot showing the self-similar fractal structure of the far-field radiation pattern of a multi-band Weierstrass planar array, with $P = 5$ and $\gamma = 0.5$.

Figure 18. A schematic representation for a recursively generated thinned hexagonal array. The first four stages of growth are indicated by the blue (Stage 1), red (Stage 2), green (Stage 3), and orange (Stage 4) arrays respectively. The six-element generating sub-array is shown in the upper-right-hand corner, where the elements are located at the vertices of the hexagon.

Figure 23a. A tri-band FSS design based on the crossbar fractal tree structure shown in Figure 22.

Figure 23b. The transmission coefficient for the FSS of Figure 23a.
4.5 Variations of Sierpinski Gasket Antennas and the Hilbert Curve Antenna

Dual-band designs, based on a variation of the Sierpinski fractal monopole, were presented in [50] and [51]. Specific applications of these designs to emerging GSM and DECT technologies were discussed. The multi-band properties of fractal monopoles based on the generalized family of mod-p Sierpinski gaskets were recently investigated by Castany et al. [52]. The advantage of this approach is that it provides a high degree of flexibility in choosing the number of bands and the associated band spacings for a candidate antenna design. Examples of a mod-3 and a mod-5 Sierpinski monopole are shown in Figure 10e and Figure 10f, respectively. A novel configuration of a shorted fractal Sierpinski gasket antenna was presented and discussed in [53]. Figure 10a shows a multi-triangular monopole antenna, which is a variation of the Parany antenna, originally considered in [54]. These multi-triangular antennas have been shown to exhibit multi-band properties with respect to input impedance and radiation patterns, even though their geometry is not strictly fractal. In particular, the properties of the Parany antenna are very similar to those of the Sierpinski antenna shown in Figure 10b. An approach for designing short dual-band multi-triangular monopole antennas was reported in [55]. This approach has the highly-desirable feature of a band ratio of less that two between the first and second bands.

The space-filling properties of the Hilbert curve were investigated in [56] and [57] as an effective method for designing compact resonant antennas. The effect of the feed-point location on the input impedance of a Hilbert curve antenna was studied in [58].

\[
\begin{align*}
\mathbf{w}_1(x,y) &= (a_1 x + b_1 y + e_1, c_1 x + d_1 y + f_1) \\
\mathbf{w}_2(x,y) &= (a_2 x + b_2 y + e_2, c_2 x + d_2 y + f_2) \\
\mathbf{w}_3(x,y) &= (a_3 x + b_3 y + e_3, c_3 x + d_3 y + f_3) \\
\mathbf{w}_4(x,y) &= (a_4 x + b_4 y + e_4, c_4 x + d_4 y + f_4) \\
\mathbf{w}_5(x,y) &= (a_5 x + b_5 y + e_5, c_5 x + d_5 y + f_5) \\
\mathbf{W}(x,y) &= \mathbf{w}_1(x,y) \cup \mathbf{w}_2(x,y) \cup \mathbf{w}_3(x,y) \cup \mathbf{w}_4(x,y) \cup \mathbf{w}_5(x,y)
\end{align*}
\]

where \(a_n, b_n, c_n, d_n, e_n, f_n\) are the parameters to be selected by the GA.

Figure 13. The generator and associated iterated function system (IFS) code for fractal dipole antennas of arbitrary shape.
Figure 19a. A contour plot of the radiation pattern for Stage 1 of the recursively generated thinned hexagonal arrays shown in Figure 18.

Figure 19b. A contour plot of the radiation pattern for Stage 2 of the recursively generated thinned hexagonal arrays shown in Figure 18.

Figure 19c. A contour plot of the radiation pattern for Stage 3 of the recursively generated thinned hexagonal arrays shown in Figure 18.

Figure 19d. A contour plot of the radiation pattern for Stage 4 of the recursively generated thinned hexagonal arrays shown in Figure 18.
was shown that while a center-fed Hilbert curve antenna may result in a very small radiation resistance, a properly chosen off-center feed point can always provide a 50Ω match, regardless of the stage of growth.

4.6 Research on Fractal Patch Antennas

Borja and Romeu [59] proposed a design methodology for a multi-band Sierpinski microstrip patch antenna. A technique was introduced to improve the multi-band behavior of the radiation patterns by suppressing the effects of high-order modes. Finally, high-directivity modes in a Koch-island fractal patch antenna were studied in [60, 61]. It was shown that a patch antenna with a Koch fractal boundary exhibits localized modes at a certain frequency above the fundamental mode, which can lead to broadband directive patterns. Localized modes were also observed in a waveguide having Koch fractal boundaries [62].

Some additional applications of fractal concepts to the design of microstrip-patch antennas were considered in [63-67]. For instance, [63] introduced a modified Sierpinski-gasket patch antenna for multi-band applications. A design technique for bowtie microstrip-patch antennas, based on the Sierpinski-gasket fractal, was presented in [64]. A computationally efficient Method of Moments formulation was developed in [65], specifically for the analysis of Sierpinski fractal patch antennas. The radiation characteristics of Koch-island fractal microstrip-patch antennas were investigated in [66]. Still other configurations for miniaturized fractal patch antennas were reported by Gianvittorio and Rahmat-Samii [67].

4.7 Combination of Genetic Algorithms with Iterated Function Systems

A powerful design-optimization technique for fractal antennas has been developed by combining genetic algorithms (GA) with iterated function systems (IFS). This GA/IFS technique was successfully used as a design synthesis tool for miniature multi-band fractal antenna elements [68-70]. The fractal antenna element geometries considered in [68-70] were created with an IFS approach by employing an appropriate set of affine transformations, similar to those used in the formulation of the standard Koch curve shown in Figure 6 and Figure 7. The general shape of the generating antenna, along with the appropriate set of affine transformations that constitutes the IFS, are indicated in Figure 13. Figure 14 shows three different examples of genetically engineered Stage 2 fractal dipole antennas. The GA/IFS technique introduced in [68-70] is capable of simultaneously optimizing the fractal antenna geometry, the locations of parallel LC reactive loads on the antenna, and the corresponding component values of these loads.

![Figure 14. Some examples of genetically engineered fractal dipole antennas.](image)

![Figure 14a. A genetically engineered miniature dual-band fractal dipole antenna element with parallel LC loads.](image)

![Figure 14b. A photograph of the dual-band fractal dipole antenna in Figure 14a.](image)
Figure 21a. A plot showing the magnitude of the impedance matrix for Stage 1 of the triadic Cantor linear fractal array.

Figure 21b. A plot showing the magnitude of the impedance matrix for Stage 2 of the triadic Cantor linear fractal array.

Figure 21c. A plot showing the magnitude of the impedance matrix for Stage 3 of the triadic Cantor linear fractal array.

Figure 21d. A plot showing the magnitude of the impedance matrix for Stage 4 of the triadic Cantor linear fractal array.

Figure 21e. A plot showing the magnitude of the impedance matrix for Stage 5 of the triadic Cantor linear fractal array.

Figure 21f. A plot showing the magnitude of the impedance matrix for Stage 6 of the triadic Cantor linear fractal array.
Figure 16a. A dual-band direct-write fractal dipole antenna with a direct-write passive LC load on Kapton.

Figure 16b. The measured frequency response (i.e., S_{11} versus frequency) of the antenna in Figure 16a is shown via a network-analyzer screen trace. The vertical axis is 10 dB per division with 0 dB as the reference.

The "fractalization" of the wire antenna allows it to be miniaturized, while the reactive loads are used to achieve multi-band behavior. An example of an optimized multi-band fractal antenna is shown in Figure 15. The objective in this case was to design a miniature dual-band antenna that had a VSWR below 2:1 at $f_1 = 1.575$ GHz and $f_2 = 1.225$ GHz. The geometry of the optimized fractal antenna, together with the required load locations and component values, are provided in Figure 15. A photograph showing a prototype of the fractal antenna is also included in Figure 15. The sensitivity of the radiation characteristics of the genetically engineered miniature multi-band fractal dipole antennas to load component values was considered in [71]. As a consequence of this study, several new optimization approaches were developed, which resulted in antenna designs with considerably reduced load sensitivity. A direct-write process for fabricating miniature reactively loaded fractal dipole antennas was introduced in [72]. The direct-write approach was compared to a traditional board-routed counterpart, incorporating soldered commercial components. A photograph of a miniature loaded dual-band fractal dipole antenna that was direct-written on Kapton is shown in Figure 16. A plot of the measured S_{11} versus frequency for the antenna is also shown in Figure 16 (see the screen trace on the network analyzer). The measured data clearly show the dual-band behavior of the fractal antenna.

5. Fractal Arrays

5.1 Deterministic and Random Fractal Arrays

The term fractal antenna arrays was originally coined by Kim and Jaggard in 1986 [73] to denote a geometrical arrangement of antenna elements that is fractal. Properties of random fractals were first used in [73] to develop a design methodology for quasi-random arrays. In other words, random fractals were used to generate array configurations that were somewhere between completely ordered (i.e., periodic) and completely disordered (i.e., random). The main advantage of this technique is that it yields sparse arrays that possess relatively low sidelobes (a feature typically associated with periodic arrays, but not random arrays), and which are also robust (a feature typically associated with random arrays, but not periodic arrays). The time-harmonic and time-dependent radiation produced by deterministic fractal arrays in the form of Paskal-Sierpinski gaskets was first studied by Lakhtakia et al. [74]. In particular, the radiation characteristics were examined for Paskal-Sierpinski arrays, comprised of Hertzian dipole sources located at each of the gasket nodes. A family of nonuniform arrays, known as Weierstrass arrays, was first introduced in [75]. These arrays have the property that their element spacings and current distributions are self-scalable and can be generated in a recursive fashion. Synthesis techniques for fractal radiation patterns were developed in [76, 77], based on the self-scalability property characteristic of discrete linear Weierstrass arrays, and the more general class of discrete linear Fourier-Weierstrass arrays. A fractal radiation-pattern synthesis technique for continuous line sources was also presented in [76]. The synthesis techniques developed for linear Weierstrass arrays were later extended to include concentric-ring arrays by Liang et al. [78].

5.2 Multi-Band Fractal Arrays

A design methodology for multi-band Weierstrass fractal arrays was introduced in [79, 80]. The application of fractal concepts to the design of multi-band Koch arrays, as well as multi-band and low-sidelobe Cantor arrays, were discussed in [81, 54]. A simplified Koch multi-band array, using windowing and quantization techniques, was presented in [82]. Finally, it was recently shown, in [83-85], that the Weierstrass-type and the Koch-type of multi-band arrays, previously considered independently in [79, 80] and [81, 54], respectively, are actually special cases of a more general unified family of self-scalable multi-band arrays. A contour plot of the far-field radiation pattern produced by a multi-band Weierstrass planar array is included in Figure 17.

5.3 Cantor, Sierpinski Carpet, and Related Arrays

Other properties of Cantor fractal linear arrays have been studied more recently in [10, 86, 87]. The radiation characteristics of planar concentric-ring Cantor arrays were investigated in [88-90]. These arrays were constructed using polyadic Cantor bars, which are described by their similarity fractal dimension, number of gaps, and lacunarity parameter. Planar fractal array configurations, based on Sierpinski carpets, were also considered in [10, 86, 87]. The fact that Sierpinski carpet and related arrays can be gen-

erated recursively (i.e., via successive stages of growth starting from a simple generating array) has been exploited in order to develop rapid algorithms for use in efficient radiation-pattern computations and adaptive beamforming, especially for arrays with multiple stages of growth that contain a relatively large number of elements [10, 11, 91, 92]. An example of a thinned hexagonal array, formed by this recursive procedure, is shown in Figure 18. The generating sub-array in this case is the hexagonal array depicted in the upper-right-hand corner of Figure 18. The array elements are located at the vertices of the hexagon. The first four stages of growth are indicated by the blue (Stage 1), red (Stage 2), green (Stage 3), and orange (Stage 4) arrays, respectively. Contour plots of the corresponding radiation patterns for each of these four arrays are illustrated in Figure 19. The Cantor linear and Sierpinski-carpet planar fractal arrays were also shown to be examples of deterministically thinned arrays [10, 86, 87]. An efficient recursive procedure was developed in [93] for calculating the driving-point impedance of linear and planar fractal arrays. For example, the first four stages in the growth of a triadic Cantor linear array of half-wave dipoles are shown in Figure 20. There are a total of \(N_p = 2^p \) uniformly excited dipole elements at each stage of growth, \(P \). Plots of the impedance matrix of the Cantor array for the first six stages of growth are presented in Figure 21. These illustrations clearly portray the self-similar fractal structure of the impedance matrix. Finally, a method for generating sum and difference patterns, which makes use of Sierpinski carpet fractal subarrays, was outlined in [94].

5.4 IFS Arrays and Compact Arrays

An iterated function system (IFS) approach for the design of fractal arrays was proposed by Baharav [95]. The use of IFS provides a very flexible design tool, which enables a wide variety of fractal array configurations, with many degrees of freedom, to be easily generated. A method for array sidelobe reduction by small position offsets of fractal elements was investigated in [96]. It was shown that because of their compact size and reduced coupling, the use of fractal antenna elements allows more freedom to accommodate position adjustments in phased arrays, which can lead to a suppression of undesirable side lobes or grating lobes. The advantages of reduced mutual coupling and tighter packing, which can be achieved by using fractal elements in otherwise conventional arrays, have also been investigated by Gianvittorio and Rahmat-Samii [97]. A genetic-algorithm approach for optimizing fractal dipole antenna arrays for compact size and improved driving-point impedance performance over scan angle was presented in [98]. The technique introduces fractal dipoles as array elements, and uses a genetic algorithm to optimize the shape of each individual fractal element (for self-impedance control), as well as the spacing between these elements (for mutual-impedance control). A useful method for interpolating the input impedance of fractal dipole antennas via a genetic-algorithm-trained neural network (called IFS-GA-NN) was presented in [99]. One of the main advantages of this IFS-GA-NN approach is that it is more computationally efficient than a direct Method of Moments analysis technique. For example, the method could be used in conjunction with genetic algorithms to more efficiently optimize arrays of fractal dipole elements, such as those considered in [98].

5.5 Diffraction from Fractal Screens and Apertures

Lakhtakia et al. [100] demonstrated that the diffracted field of a self-similar fractal screen also exhibits self-similarity. This finding was based on results obtained using a particular example of a fractal screen constructed from a Sierpinski carpet. Diffraction from Sierpinski carpet apertures has also been considered in [9], [11], [101], and [102]. The related problems of diffraction by fractally serrated apertures and Cantor targets have been investigated in [103-111].

6. Fractal Frequency-Selective Surfaces

Fractals were originally proposed for use in the design of frequency-selective surfaces (FSSes) by Parker and Sheikh [112]. This application makes use of the space-filling properties of certain fractals, such as the Minkowski loop and the Hilbert curve, in order to reduce the overall size of the unit cells that constitute an FSS. A dual-band fractal FSS design, based on a two-iteration Sierpinski gasket dipole, was first demonstrated in [113-115]. It was shown that the fractal FSS reported in [113-115] exhibits two stop-bands with attenuation in excess of 30 dB. Another possible approach that uses fractal tree configurations for realizing multiband FSS designs was first suggested in [42]. A particular example was considered by Werner and Lee [116, 117], where a tri-band FSS was designed using Stage 3 crossbar fractal tree elements. The first three stages in the construction of a crossbar fractal tree are illustrated in Figure 22. Figure 23 shows four adjacent cells of a

Figure 20. The first four stages in the process of generating a triadic Cantor linear array of half-wave dipoles. The dark gray dipoles represent physical elements, while the light gray dipoles are virtual elements.

Figure 22. The design of a tri-band FSS using fractal elements: The first three stages in the construction of a crossbar fractal tree.
tri-band FSS. In this case, the individual elements or cells of this FSS are made up of Stage 3 crossbar fractal trees, which provide the required tri-band behavior. The transmission coefficient as a function of frequency is plotted in Figure 23 for a Stage 1, Stage 2, and Stage 3 crossbar fractal FSS. The stop-band attenuations of this fractal FSS were found to be in the neighborhood of 30 dB. This particular fractal FSS design approach also has the advantage of yielding the same response to either TE- or TM-mode excitation. Another noteworthy feature of this design technique is that the separation of bands can be controlled by choosing the appropriate scaling used in the fractal crossbar screen elements. More recently, various other self-similar geometries have been explored for their potential use in the design of dual-band and dual-polarized FSSes [118].

7. Bent-Wire Antennas

There has been some recent work to suggest that some random fractal or non-fractal bent-wire antennas may, in some cases, offer performance improvements compared to wires that have strictly deterministic fractal geometries. For instance, a comparison of the radiation characteristics of deterministic fractal and non-fractal (or random fractal) loop antennas was made in [119]. From this comparison, it was concluded that while the loop geometry is one factor in determining the antenna performance, it is not as significant as its overall physical area and total wire length in the loop. In [120], the performance of Koch fractal and other bent-wire monopoles as electrically small antennas was analyzed and compared. It was found that the simpler, less compressed bent-wire geometries of the meander line and normal-mode helix exhibit similar or improved performance when compared to that of a Koch fractal monopole. Finally, a methodology has been developed in [121] that employs a genetic algorithm to evolve a class of miniature multi-band antennas, called stochastic antennas, which offer optimal performance characteristics. This method is more general than the approach outlined in [68, 69], since it is not restricted to fractal geometries, and there are no reactive loads required to achieve the desired multi-band performance. The main disadvantage of the method is the fact that the optimization procedure is much less efficient than the genetic-algorithm approach based on fractal antenna geometries generated via an IFS.

8. Conclusions

Applications of fractal geometry are becoming increasingly widespread in the fields of science and engineering. This article presented a comprehensive overview of the research area we call fractal antenna engineering. Included among the topics considered were 1) design methodologies for fractal antenna elements, 2) application of fractals to the design of antenna arrays, and 3) frequency-selective surfaces with fractal screen elements. The field of fractal antenna engineering is still in the relatively early stages of development, with the anticipation of many more innovative advancements to come over the months and years ahead.

9. Acknowledgements

This work was supported in part by a grant from the Center for Remote Sensing under an SBIR project directed by Mr. Joe Tenbarge of Wright-Patterson Air Force Base. The authors would like to express their appreciation to Raj Mittra for his valuable comments relating to this article. The authors would also like to thank Mark A. Gingrich, Douglas J. Kern, Josh S. Peiko, and Pingguan L. Werner for their assistance with preparing the figures used in this article. Special thanks goes to James W. Culver, Steven D. Eason, and Russell W. Libonati of Raytheon, St. Petersburg, Florida, for providing the photograph of the prototype fractal dipole antenna used in Figure 15. Special thanks also goes to Kenneth H. Church, Robert M. Taylor, William L. Warren, and Michael J. Wilhelm of Sciperio, Inc., Stillwater, Oklahoma, for providing the photos used in Figure 16. Finally, the authors are grateful to one of the reviewers for kindly supplying Figure 11.

10. References

Introducing the Feature Article Author

Dr. Douglas H. Werner is an Associate Professor in the Pennsylvania State University Department of Electrical Engineering. He is a member of the Communications and Space Sciences Lab (CSSL), and is affiliated with the Electromagnetic Communication Research Lab. He is also a Senior Research Associate in the Electromagnetics and Environmental Effects Department of the Applied Research Laboratory at Penn State. Dr. Werner received the BS, MS, and PhD degrees in Electrical Engineering from the Pennsylvania State University in 1983, 1985, and 1989, respectively. He also received the MA degree in Mathematics there in 1986. Dr. Werner was presented with the 1993 Applied Computational Electromagnetics Society (ACES) Best Paper Award, and was also the recipient of a 1993 International Union of Radio Science (URSI) Young Scientist Award. In 1994, Dr. Werner received the Pennsylvania State University Applied Research Laboratory Outstanding Publication Award. He has also received several Letters of Commendation from the Pennsylvania State University Department of Electrical Engineering for outstanding teaching and research. Dr. Werner is a former Associate Editor of Radio Science, an Editor of the IEEE Antennas and Propagation Magazine, a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the American Geophysical Union (AGU), USNC/URSI Commissions B and G, the Applied Computational Electromagnetics Society (ACES), Eta Kappa Nu, Tau Beta Pi, and Sigma Xi. He has published numerous technical papers and proceedings articles, and is the author of eight book chapters. He recently published a new book for IEEE Press, entitled *Frontiers in Electromagnetics*. He has also contributed a chapter for a Wiley Interscience book entitled *Electromagnetic Optimization by Genetic Algorithms*. He was the recipient of a College of Engineering PSES Outstanding Research Award and Outstanding Teaching Award in March, 2000, and March, 2002, respectively. He was also recently presented with an IEEE Central Pennsylvania Section Millennium Medal.

His research interests include theoretical and computational electromagnetics, with applications to antenna theory and design, microwaves, wireless and personal communication systems, electromagnetic wave interactions with complex meta-materials, fractal and knot electrodynamics, and genetic algorithms.

Dr. Suman Ganguly has been working in the areas of Radio Science, Radio Engineering, Electronics, Ionospheric and Plasma Physics for over 30 years. He graduated from Calcutta University, India, with a Masters in Physics and Electronics in 1962. He obtained his PhD from the same university in 1970, specializing in Ionospheric Physics. Since then, he has been working in a variety of disciplines and in different institutions. He worked at Lancaster University, UK, dealing with the ATS-6 satellite beacon project. He joined Arecibo Observatory, Puerto Rico, during 1976, and worked with the 1000-foot radar, probing the ionosphere. During 1979, he joined Rice University, where he continued his research on ionospheric and plasma sciences. He was actively involved in ionospheric modification using high-powered radio waves, and the first ULF generation in the ionosphere at Arecibo was reported by him. During 1986, he started a small R&D organization, Center for Remote Sensing, in Virginia, and has been active in numerous projects involving communication, navigation, signal processing, electromagnetics, instrumentation, space science, and other areas of radio engineering. Center For Remote Sensing (http://www.cfrsi.com) comprises several engineers, and has provided advanced technology development to most of the government agencies as well as private organizations. He has over 200 publications, and is a member of numerous professional organizations.
射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养; 我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评; 并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30 门视频培训课程和3 本图书教材，旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让您完全达到和胜任一个合格的射频工程师的要求。

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套课程套装包含了本站全部ADS培训课程，是迄今国内最全面、最专业的ADS培训课程套装，可以帮助您从零开始，全面深入学习ADS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的ADS学习更加轻松顺畅。

HFSS学习培训课程套装

该套课程套餐包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训课程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅。

课程网址：http://www.edatop.com/peixun/hfss/11.html
专注于微波、射频、天线设计人才的培养
网址：http://www.edatop.com

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：

※ 成立于 2004 年，10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com