A GaN HEMT Amplifier with 6-W Output Power and >85% Power-Added Efficiency

Michael Boers, Anthony Parker, and Neil Weste

The 2007 IEEE MTT-S student power amplifier competition requires students to design and fabricate a highly efficient power amplifier. Recently published results show power amplifiers in the low GHz range with efficiencies greater than 80% [1], [2]. This article presents the winning power amplifier implemented with a gallium nitride (GaN) high electron mobility transistor (HEMT) and having power-added efficiency (PAE) greater than 85%. It will be shown that computer-aided design (CAD) simulation tools, accurate device models, and sensible design rules can produce first-pass power amplifier design success. An overview of design, fabrication, and testing processes is presented here together with measured results.

Design
The aim of the competition was to design a power amplifier with the highest efficiency at an output power above 5 W and at a frequency above 1 GHz. To meet these criteria this amplifier was designed for an output frequency of 1.2 GHz, an output power of >38 dBm, and an efficiency above 80% (last year’s winner!).

The transistor chosen for this design was a 10-W RF power GaN HEMT from Cree (CGH40010). Venkata Gutta, a colleague at Macquarie University, suggested the device and the samples were easily obtained, courtesy of Cree. The transistor used is available in a screw-down package and is not internally matched. It comes with an accurate nonlinear model, which is critical for the design of high-efficiency power amplifiers.

Applied Wave Research’s (AWR’s) Microwave Office software was used for the design of the amplifier. It is an integrated environment that allows the design and simulation of printed circuit board or integrated circuit RF circuits as well as providing seamless connection to electromagnetic (EM) simulators such as Sonnet.

Designing and building an amplifier is a refreshing change from integrated circuit design as the amplifier can be tweaked, transmission lines can be modified if needed, and it can be held firmly in two hands!

The design and modeling strategies employed are similar to that presented in [3] but were adapted to deal with a nonlinear amplifier rather than Class A. Instead of using multimeter software to synthesize the input and output matching networks, an input and load termination optimization method was used to obtain the maximum PAE, and matching networks were designed around these components.

At the heart of any efficient amplifier is a switch. The switching action results in output currents or voltages that resemble a square wave. While the PAE calculation is concerned with power at the fundamental (and, hence, harmonics should be minimized), these harmonics need to be present or otherwise the current and voltage waves cannot exist in any other form than a pure sinusoid. Due to this, impedances at all harmonics up to the fifth were included in the input and output matching tuners.
At this stage, it needs to be pointed out that this amplifier was designed without a class. The main concern was what harmonic impedances could be provided at the input and output of the amplifier in order to obtain maximum efficiency.

To model the effect of different terminations at the input and output of the transistor, an optimization routine was set up where the impedance (magnitude and phase) presented to the input and output for five harmonics was a parameter as well as the bias and drain voltage. Loose convergence tolerances were set in the harmonic balance simulator and the goals of the optimization were set to >85% PAE with >6 W of output power at 1.2 GHz.

The efficiency generated by this method was 88% at 1.2 GHz with an output power just above 6 W.

The next step is to take the ideal components (impedance tuners) at the input and output of the transistor and turn them into real matching networks made up of transmission lines and capacitors. The transistors are bilateral in this configuration, so a change of output impedance affects the input impedance and vice versa. One of the advantages of using this method allows the input match to be designed with the output matched in a condition that achieves high efficiency (i.e., with the lossless matching network). This reduces the amount of time re-optimizing the input match as the output match is changed.

As time was limited, a trial-and-error approach was used to transform the ideal impedance tuners into real matching networks. In the future, an automated method that takes the parameters from the source and load tuners and creates the matching networks could be employed.

The resulting input matching networks are shown in Figure 1.

Figure 1. Simplified schematic for the power amplifier showing input and output matching networks.

Figure 2. EM networks for the input and output analyzed using Sonnet.
shortened by approximately 5 mm at each port and a transmission line component was used. This allowed Sonnet to take care of any step and coupling effects, and the variable transmission lines in the schematic are used to tune out any differences. Only one EM simulation was needed for each network, taking a few minutes to simulate and providing a more accurate model.

Inspiration for the layout was taken from the Cree reference designs, especially with regard to the capacitive decoupling at the gate and drain terminations. The layout was completed in a matter of minutes, using the “snap together” function available in AWR, leaving only the surrounding metal and drill holes to be placed. The layout is shown in Figure 3.

Fabrication

The amplifier was designed from Rogers 4003 PCB material. This material was chosen for its good RF characteristics and ease of manufacture. The PCB was milled out in the electronics workshop at the university and loaded by hand.

CAD software was used to design a small aluminum heat sink. This was manufactured by the mechanical workshop. As well as providing some heat sinking for the transistor, it was used to ground the source of the HEMT and provide a solid mounting for the transistor. It was also used at the input and output to hold the SMA connectors.

Measurements

After taking a few manual measurements and seeing the difference that a few tenths of a dB in calibration accuracy had on the efficiency, it was decided to use VB.NET and program an automated test setup that included calibration for all the instruments.

A soft instrument was created to measure the PAE. This program allows the frequency, input power, drain voltage, and bias level to be swept. Using a power meter, values are obtained to correct differences between requested/
measured power and actual power. These are entered into the graphical user interface (GUI) and are used in the PAE calculation.

A screen-shot of the GUI is shown in Figure 4. Communication with the instruments is handled using the GPIB. This software allows the amplifier to be characterized easily. The bias point, input power level, and frequency of highest efficiency are also able to be determined.

Simulated versus Measured Results
With the measurements done, simulated versus measured results could now be analyzed (see Figure 5). The efficiency and output power levels were extremely close to specification, especially across the frequency desired for this design. A slight error in the calibration shows the measured PAE to be slightly higher than that measured at the competition.

The simulated output current and voltage waves are shown in Figure 6. It appears, due to the voltage peaking, that this amplifier is operating in a quasi-F⁻¹ mode. It is likely that there is a portion of Class E operation as well due to the output capacitance within the device and the capacitance added by the packaging. As Steve Cripps mentions in the introduction to his latest book [5], it is difficult to determine the class unless the output current and voltage waves can be directly measured. To compound this, these simulation results are not the intrinsic transistor current and voltage waveforms since they are measured outside the package.

Conclusion
The competition was a great experience. Designing and building an amplifier is a great way to learn (Figure 7). It is also a refreshing change from integrated circuit design as the amplifier can be tweaked, transmission lines can be modified if needed, and it can be held firmly in two hands!

The measurement problems encountered on the competition day indicate how important it is to verify the measurement setup through a known standard or some other method; it also demonstrates that taking an accurate PAE measurement is quite difficult—a few tenths of dB error in the output signal equates to a lot of percentage points!

I would encourage other students to enter this competition as it is a rewarding experience and gives you the opportunity to design and build a real amplifier.

Acknowledgments
Both the electronic and mechanical workshops at Macquarie University helped out with manufacturing on an extremely short time scale. Mike Heimlich of AWR helped with Microwave Office and put us in touch with Steve Boerman, who provided some sound advice. Jim Harvey and Peter Evans (MIMIX Broadband) provided valuable assistance before undertaking the design. Modelithics supplied the passive component models. This work was made possible with the support of the Australian Research Council, NHEW R&D, and our partners AWR and Sonnet.

References
专注于微波、射频、天线设计人才的培养
易迪拓培训
网址：http://www.edatop.com

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计人才的培养；我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装
该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门ADS学习培训课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家…

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训课程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html
CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解放结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：

※ 成立于 2004 年，10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com