High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

Sang-June Park,∗ Isak Reines,† and Gabriel Rebeiz †

∗Qualcomm Incorporated
San Diego, CA 92121
† University of California San Diego
La Jolla, CA 92093

Abstract—This paper presents a high-Q tunable evanescent-mode cavity filter using capacitive RF MEMS cantilever switches with a frequency coverage of 5.5-4.3 GHz. The filter results in an insertion loss of 2.6-5.3 dB over the tuning range and a 3-dB bandwidth of 55-40 MHz (fractional bandwidth of %1). The measured Q_u of the filter is 511-273 over the frequency range, which is to our knowledge, the best report Q using RF-MEMS technology.

Index Terms—evanescent-mode, RF MEMS, Capacitive cantilever switch, high-Q tunable filter, waveguide filter.

I. INTRODUCTION

Low-loss tunable filters are essential for multiband radios are essential, and to our knowledge tunable filters with Q > 200 have not yet been reported at 2-10 GHz. To realize a tunable filter with Q_u > 400, both the resonator and tunable device must have a Q_u > 400. The resonator Q using planar technology is 100-250 depending on the substrate. The Q can be increased to ~500 using a suspended strip-line configuration, but this occupies a substantial volume. Standard (full size) cavity resonators can also be used in tunable filters for the high Q (> 5,000), but their large volume at 2-10 GHz and incompatibility with fabricated tuning devices limit their usefulness for wireless systems. The volume can be significantly reduced with evanescent-mode designs which result in Q_u of 2,000-5000 [1]. These have been extensively used in the industry and recently, Joshi et al. showed a 3-6 GHz tunable evanescent-mode filter with external piezoelectric actuators [2], [3], [4].

In this work, a novel high-Q cantilever-switch capacitance network is used as a tuning network inside an evanescent-mode cavity filter. The measured results with RF-MEMS cantilever-switch capacitance network show a Q_u of 511-273 at 5.5-4.3 GHz.

II. DESIGN AND IMPLEMENTATION OF THE FILTER

A. Extracting Filter Design Parameters

The waveguide mode below cutoff creates a localized reactive region. The characteristic impedance of the TE evanescent-mode is inductive and equivalent to either a T- or a II-circuit model. As is well known, these inductances can be utilized as coupling and loading element in a filter design. It is usually easier to realize a shunt capacitance than a series one in a waveguide, and a filter circuit with shunt capacitances is shown in Fig. 1. Using the resonance condition, the required shunt capacitance values can be found by

\[\omega_0 C_r = B_r = \frac{1}{X_0} \coth \gamma l \]

where

\[X_0 = \frac{377}{\sqrt{(\frac{k_e}{k_c})^2 - 1}} \]

\[k_c = \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2} \]

The shunt capacitances are implemented using capacitive posts in the waveguide, and a substrate with an RF-MEMS tunable switch network is mounted on each side of the posts to tune the resonance frequency. An inductive loop coupling scheme is utilized as the external coupling circuit due to its matching characteristics over a wide frequency range.

A full-wave model of the evanescent-mode cavity resonator is shown in Fig. 2, and HFSS simulation is used to extract \(f_c, f_o, Q_e, Q_L, \) and \(C_L \) (\(C_L \) is the RF-MEMS capacitance network). A lumped-port is placed between the cavity wall and the post to include \(C_L \) in the simulation in addition to a wave-port at the coaxial input. The coupling coefficient of the filter, \(k_c \), is calculated using the pole-splitting method, and is given by

\[k_c = \frac{f_e^2 - f_o^2}{f_e^2 + f_o^2} \]

The extracted \(C_L, Q_e, \) and \(k_c \) values are plotted versus resonance frequency in Fig. 3. \(C_L \) values of 640-180 fF result in a resonance frequency of 4.0-6.0 GHz, respectively.
Fig. 2. Full-wave simulation model of the evanescent-mode cavity resonator with loop coupling.

Fig. 3. The extracted C_L (a), Q_e, and k_c (b) with the resonance frequency change ($y_e=5$ mm, $x_c=2.5$ mm). The calculations are done at 5 GHz with the cavity in Fig. 2.

and the corresponding Q_e and k_c values are 170 ± 23 and 0.0062 ± 0.0005, respectively. The frequency dependence in k_c shows a constant fractional-bandwidth behavior (23-40 MHz 3-dB bandwidth at 4-6 GHz), and the filter maintains good impedance matching over the frequency range due to the decrease in Q_e.

The external coupling of the resonator is controlled by the area between the cavity wall and the coaxial pin, and can be adjusted by changing y_e. The symmetry plane of the filter in the resonator is set to PEC or PMC to obtain the even- or odd-mode resonance frequency. The extracted Q_e and k_c values versus y_e and x_c are plotted in Fig. 4.

B. High-Q RF-MEMS Cantilever-Switch Capacitance Network and The Filter Implementation

For a narrow-band tunable filter, it is very important to match the resonance frequencies of each resonator. Simu-

Fig. 4. The extracted Q_e ($x_c=2.5$ mm) (a) and k_c ($y_e=5$ mm) for the cavity resonator in Fig. 2 with different y_e and x_c, respectively. The calculations are done at 5 GHz with the cavity in Fig. 2.

Fig. 5. The high-Q RF-MEMS cantilever-switch capacitance network and its installation in the tunable evanescent-mode waveguide cavity.
lations show that at 6.0 GHz, the two loading capacitance values (C_{L1} and C_{L2}) need to be controlled within ±1 fF so as not to degrade the filter response. At 4.0 GHz, a 2 fF variation is the maximum allowed. This, as well as the high-Q requirement, put serious limitations on the design of the RF-MEMS capacitance network.

An RF-MEMS cantilever-switch with a digital/analog tuning capability is utilized to fulfill those requirements. The thick plated (3.5-4.0 μm) cantilever and the zipping effect with a hold-down bias voltage, V_h, make this switch a good candidate for both high-Q and analog tuning capability. The measured cantilever-switch has an up-state and down-state capacitance of 40 fF ($V_p=30$ V) and 250 fF ($V_p=30$ V, $V_h=0$ V), respectively, and its analog capacitance coverage is 250-320 fF ($V_p=30$ V, $V_h=0$-12 V). The measured Q of this device is > 300 at 6 GHz, even in the down-state position [5].

The loading capacitor, C_L, is realized using a 4-bit RF-MEMS cantilever-switch capacitance network and each switch has two bias-lines attached to it (Fig. 5). To minimize the impact on the filter Q, the bias-line length is minimized and the connections between the bias-lines and the bias-wires are accomplished with conductive bias-paths. The bias-wires connected at the end of the bias-paths go through a small channel on the cavity wall, and create a link to the external voltage source. For this high-Q resonant cavity, it is very important to minimize radiation loss through this biasing channel. An RC circuit is implemented in the bias-path to prevent the RF energy leakage to the bias wires.

The chip layout of the 4-bit high-Q RF-MEMS cantilever-switch capacitance network is also shown in Fig. 5. Each switch has a metal-air-metal fixed scaling capacitor connected in series, and two bias-lines covered with metal bridges. With the analog tuning capability, the 4-bit C_L network covers the capacitance range of 160-630 fF (Fig. 6), which in turn, results in the 4-6 GHz frequency coverage (Fig. 3).

The complete filter model with the high-Q tunable RF-MEMS chips is shown in Fig. 7. Two separate chips are installed on each posts to create capacitive loading in each resonator. The bias-wires attached to the RF-MEMS chip pass through the small channels in the cavity and are connected to the outside bias source. The input couplings are realized using center pins of the coaxial connectors, and the inter-resonator coupling is controlled by the coupling iris located at the center and sets the filter bandwidth.

III. FABRICATION AND MEASUREMENTS

High-Q cantilever-switch capacitance network chips were fabricated and installed in the evanescent-mode cavity. A single resonator with different RF-MEMS chip was measured. Two RF-MEMS cantilever-switches were actuated in this measurement and the results are summarized in Table I. A measurement tunable Q of 425-528 was achieved at 4.7-5.5 GHz, which is to our knowledge, the highest tunable Q ever recorded for a tunable RF MEMS network.

The filter is designed to cover a 4-6 GHz range but the measurement was done by actuating only one cantilever-

TABLE I

MEASURED RESPONSE OF THE RESONATOR WITH TWO RF-MEMS SWITCHES ACTUATED.

<table>
<thead>
<tr>
<th>f_r (GHz)</th>
<th>4.69</th>
<th>4.73</th>
<th>5.02</th>
<th>5.05</th>
<th>5.08</th>
<th>5.41</th>
<th>5.46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_m</td>
<td>425</td>
<td>430</td>
<td>447</td>
<td>450</td>
<td>458</td>
<td>536</td>
<td>548</td>
</tr>
</tbody>
</table>

TABLE II

THE MEASURED RESPONSES OF THE TUNABLE FILTER.

<table>
<thead>
<tr>
<th>f_0 (GHz)</th>
<th>4.36</th>
<th>4.48</th>
<th>4.64</th>
<th>5.37</th>
<th>5.48</th>
<th>5.53</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1 (dB)</td>
<td>5.36</td>
<td>5.13</td>
<td>4.48</td>
<td>3.26</td>
<td>2.75</td>
<td>2.68</td>
</tr>
<tr>
<td>3-dB BW (%)</td>
<td>0.94</td>
<td>0.97</td>
<td>0.93</td>
<td>1.0</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>3-dB BW (MHz)</td>
<td>40.9</td>
<td>42.1</td>
<td>43.2</td>
<td>56.5</td>
<td>53.7</td>
<td>55.5</td>
</tr>
<tr>
<td>Q_m</td>
<td>273</td>
<td>285</td>
<td>332</td>
<td>424</td>
<td>506</td>
<td>511</td>
</tr>
</tbody>
</table>
MEMS switch
Fixed Scaling
Capacitor
Covered Bias Lines
biasing pad
RC network
input loop coupling
MEMS chip

Fig. 8. The fabricated tunable evanescent-mode cavity filter with the RF-MEMS cantilever-switch capacitance network chip.

switch due to mechanical difficulties encountered in attaching 8 thin insulated wires on the chip. The evanescent-mode cavity with the installed RF-MEMS chip is shown in Fig. 8, and the measured results are presented in Fig. 9. A frequency coverage of 4.36-4.65 GHz was measured with the analog tuning coverage in the down-state position (of the switch) and 5.37-5.53 GHz coverage was measured with analog tuning in the up-state position. The measured results are summarized in Table II. The measured frequency response shows a 3-dB bandwidth of 1% and Q_u of 273-511 at 4.3-5.6 GHz with excellent impedance match. To our knowledge, this represents the state-of-the-art in this frequency range.

IV. CONCLUSION

This paper presented the first results of a tunable high-Q tunable resonator based on a 4-bit RF-MEMS capacitance network. Mechanical difficulties prevented the control of all four RF-MEMS switches and limited the tuning range. Both tunable resonator and filter measurements indicate the potential of very high-Q tuning, and a tunable resonator Q_u of 425-550 was achieved at 4.7-5.5 GHz. RF-MEMS chips with a more robust mechanical biasing network are currently being fabricated, and filter tuning results will be presented at the conference.

ACKNOWLEDGMENT

This work was supported by the DARPA ASP Program under a subcontract from Rockwell Collins.

REFERENCES

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计人才的培养; 我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评; 并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材; 旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程, 共包含10门ADS学习培训课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深、详细而又全面地讲说了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去, 成为ADS设计专家…

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训课程套装，可以帮助您从零开始, 全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html
专注于微波、射频、天线设计人才的培养
网址：http://www.edatop.com

CST 学习培训课程套装
该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作各项功能及其在微波射频、天线设计等领域设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑。

HFSS 天线设计培训课程套装
套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难。

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装
套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试。

我们的课程优势：
※ 成立于 2004 年，10 多年丰富的行业经验。
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求。
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学。

联系我们：
※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com