Bias Circuits for GaAs HBT Power Amplifiers

Esko Järvinen, Sami Kalajo, Mikko Matilainen*

Nokia Mobile Phones, Itämerenkatu 11-13, FIN-00180, Helsinki, Finland
*Nokia Research Center, Itämerenkatu 11-13, FIN-00180, Helsinki, Finland

Abstract — This paper discusses the effects of process and temperature variations on the performance of GaAs HBT power amplifier bias circuits. A novel feedback bias circuit, which overcomes these problems, is presented. The measured variation from 54 to 60 mA in the bias current, over the temperature range of –25 to +85°C, agrees well with the simulations. The circuit is insensitive to variations in the regulated voltage which is a desirable feature in a case when the amplifier is biased to a constant current. On the other hand, a smooth bias and gain control can be achieved by adding an extra resistor connected to a separate control voltage.

I. INTRODUCTION

The potential of the GaAs HBT power amplifiers for cellular phones has been clearly seen in 1990’s [1] and today the technology is mature and ready for mass production.

The vertical structure of HBT is beneficial in achieving high current density. This provides higher power density and smaller device size compared to MESFET and HEMT amplifiers. However, the high power density emphasizes the role of the thermal design. One important aspect of the HBT power transistor design is the use of ballasting to avoid the collapse of current gain caused by the unbalance of the parallel cells [2]. Another issue, which can not be underestimated, is the design of bias circuits to fully utilize the excellent RF performance of the GaAs HBT technology. A modified current mirror type of bias circuit with a current sensing transistor has been used in [3] to provide an optimum condition for the power device as a function of temperature and output power.

In this paper we describe the properties of typical power amplifier bias circuits and present a novel feedback bias scheme which is insensitive to temperature, process, and bias voltage variations.

II. CIRCUIT DESCRIPTION

Fig. 1 shows a typical GaAs HBT power amplifier stage with a current mirror type of biasing, where the collector current I_c is controlled by the control current I_{pc}. The benefit of this one-V_{BE} circuit is its ability to operate from a low control voltage. The control characteristics of the circuit can be further improved if together with the control voltage V_{pc} also the regulated voltage available in the phone is utilized [4].

This circuit is more stable against temperature variations than the simple resistive biasing. However, the performance is affected by the mirror ratio A, temperature difference between the RF and bias transistors, and the operating current I_c.

Because of the large size of the power transistor the value of the base current is often so high that it exceeds the current feeding capability of the control source V_{pc}. In order to increase the current driving capacity of the bias circuit, a base current driver transistor Q_2 is used in the circuit of Fig. 2. A typical temperature compensation circuit is realized by employing two diode-connected transistors in series from the base of Q_2 to the ground [5]. If the layout is made carefully, this circuit keeps the quiescent current constant as a function of the temperature. This is, however, not necessarily the desired property, because usually the gain is the parameter, which should remain constant when temperature varies. This

![Fig. 1. A power amplifier stage with a current mirror bias circuit.](image-url)
can be achieved by connecting a mirror transistor \(Q_{\text{im}} \) as shown in Fig. 2. This circuit tends to increase \(I_c \) as temperature increases compensating the roll-off in dc-beta of the AlGaAs/GaAs HBT. This circuit works well in practice as has been demonstrated earlier in a push-pull GSM power amplifier [6].

Fig. 2. A power amplifier stage with a base current driver [6].

The bias circuits described above have some useful properties but both of them are still lacking the precise control over temperature and process variations. Depending on the layout there can be a considerable temperature difference between the bias and RF transistors, which causes error to the bias current. These circuits have also another drawback, because the bias current \(I_c \) is sensitive to variations in the control voltage \(V_{pc} \). For example, a GSM power amplifier output stage typically biased to the fixed bias current close to class B by using the regulated voltage \(V_{\text{reg}} \) would suffer from variations in the bias current. To overcome these problems a new type of bias circuit based on the feedback has been proposed [7].

The core of this circuit, shown in Fig. 3, is similar to the one shown in Fig. 2. The base current \(I_b \) for the power transistor \(Q_1 \) is fed by the driver \(Q_2 \). Around this circuit there is a feedback loop which stabilizes the operating point. The basic version sets the current of \(Q_1 \) constant.

The power stage consists of transistors \(Q_1 \) and \(Q_{\text{im}} \), and \(Q_{\text{im}} \) is used for sensing the bias current \(I_c \). Because the base nodes of the transistors \(Q_{\text{d1}} \) and \(Q_{\text{d2}} \) forming a differential amplifier are at same potential, \(V_1 = V_2 \), and the collector current of \(Q_{\text{im}} \) is

\[
I_{\text{im}} = \frac{(V_{\text{reg}} - V_1)}{R_3}
\]

(1)

where \(V_1 \) is the reference voltage defined by \(R_1, R_2, \) and \(V_{\text{reg}} \). The collector current of \(Q_1 \) is as a first approximation \(I_c = A I_{\text{im}} \) obtained by scaling the current of \(Q_{\text{im}} \) by the mirror ratio \(A \). An important issue, the stability of the control loop, is guaranteed by a proper selection of the values for \(R_f \) and \(C_f \).

The current sensing cell formed by the base resistor \(R_b \) and the transistor \(Q_{\text{im}} \) is identical to the power transistor cell formed by the unit cell transistor and the base resistor \(R_b \) that also serves a ballasting function. In the layout it is advantageous if \(Q_{\text{im}} \) is a part of the power transistor, which guarantees that it is at the same temperature as the power transistor.

Fig. 3. A power amplifier stage employing feedback bias circuit.

The basic configuration sets a constant bias current, but by adding an extra resistor \(R_{3pc} \) in parallel with \(R_3 \) and connecting it to the control voltage \(V_{pc} \), it is possible to vary the bias current and gain of the stage. In this case \(I_c \) is defined by the equation

\[
I_c = A \frac{(V_{\text{reg}} - V_1)}{R_3} + A \frac{(V_{pc} - V_1)}{R_{3pc}}.
\]

(2)

With this type of bias scheme it is possible to realize simultaneously an effective power switch-off operation and a smooth gain control without compromises [4].

Fig. 4 shows the simulated performance of the feedback bias circuit over the temperature range of –20 to +85°C when the value of regulated voltage is varied from 2.7 to 2.9 V. At a nominal \(V_{\text{reg}} \) value of 2.8 V the variation of the current over the whole temperature range is below 5 mA. Taking into account both temperature and \(V_{\text{reg}} \) variations the bias current \(I_c \) remains in the range of 52 – 60 mA. This guarantees that the output stage operates in the proper bias region in all conditions.
III. Results

Measurements were made for all the three bias topologies described in the previous chapter. These circuits have been used in push-pull WCDMA power amplifiers fabricated in a commercial GaAs HBT process.

Fig. 6 shows the measured performance as a function of the temperature. The supply voltage has been 3.5 V in all measurements. The simple current mirror bias shows a high sensitivity to temperature and the bias current drops from 69 mA (-25°C) to 27 mA (+85°C). The change vs. temperature is larger than the simulated one and it is also in the wrong direction.

The circuit of Fig. 2 shows also a considerable variation of 36 mA, but it is in the right direction compensating the gain drop of the transistor at high temperatures. In this case the simulated and measured performance agreed well. It was therefore possible to utilize this feature in the WCDMA amplifier design despite the fact that the circuit slightly overcompensates the gain roll-off.

The best performance was achieved with the feedback bias circuit as can be expected from the simulated performance. Also in this case the measured performance agrees very well with the simulated one (Fig. 4) and the bias current varies from 54 mA (-25°C) to 60 mA (+85°C).

Typically the output stage of a WCDMA power amplifier is biased to class AB with a fixed bias current. In that case it is desirable if the quiescent current is insensitive to bias voltage variations. Fig. 7 shows the sensitivity of the bias circuits to the variations in the bias.
voltage, which in this case has been the regulated voltage. The circuit of Fig. 2 has the highest variation of 31 mA when the regulated voltage has been varied from 2.7 to 2.9 V. The simple current mirror shows a reasonable performance, the variation is only 5 mA. The performance of the feedback bias circuit is excellent as the bias current remains constant (57 mA) over the whole voltage range.

![Fig 7](image)

Fig. 7. Measured bias current of the circuits in Figs. 1-3 as a function of bias voltage at room temperature +25 °C.

IV. CONCLUSION

A new bias circuit for power amplifiers was presented. The circuit is less sensitive to process and temperature variations than the conventional solutions. The measured bias current of the output stage of a WCDMA power amplifier varied from 54 mA to 60 mA over temperature range of -25°C to +85°C. The circuit is also insensitive to variations in the regulated voltage which is a desirable feature in the case when the amplifier is biased to a constant current. On the other hand, a smooth bias and gain control can be achieved by adding an extra resistor connected to a separate control voltage.

ACKNOWLEDGEMENT

The authors would like to acknowledge K. Maula and A. Pärssinen for the paper review.

REFERENCES

专注于微波、射频、天线设计人才的培养
易迪拓培训
网址: http://www.edatop.com

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材：旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html
CST 学习培训课程套装
该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

HFSS 天线设计培训课程套装
套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…
课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装
套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：
※ 成立于 2004 年，10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：
※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com