A CMOS radio-frequency power amplifier including on-chip matching networks has been designed in a 0.6-μm n-well triple-metal digital CMOS process, and optimized using a simulated-annealing-based custom computer-aided design tool. A compact inductor model enables the incorporation of parasitics as an integral part of the parasitic-aware design and CAD optimization; low-Q metal3 spiral inductors are used in the input and output matching networks. A 3-V 85-mW balanced fully integrated Class-C power amplifier with a measured drain efficiency of 55% at 900 MHz has been designed, optimized, integrated, and tested.

Index Terms—CMOS analog integrated circuits, CMOSFET power amplifiers, power amplifiers, simulated annealing.

I. INTRODUCTION

Recent years have seen a worldwide effort to develop highly integrated, low-cost radio-frequency (RF) transceiver circuits for wireless applications. Various global standards dictate that such systems meet stringent specifications at carrier frequencies ranging from 800 MHz to 5.6 GHz, and that the IC technology used maximize product portability and minimize cost. Consequently, CMOS has emerged as an attractive technology for implementing single-chip radios. At present, baseband and intermediate-frequency (IF) functions are easily integrated in CMOS while more difficult RF transceiver circuits are the subject of intense research [1]–[7], [20].

A major challenge in the design of CMOS RF ICs owes to the absence of high quality factor (high-Q) passive elements. The parasitics associated with on-chip inductors, capacitors, active devices, and the IC package have an adverse impact on the performance of RFICs. The traditional solution to this problem is the use of off-chip passive components which allows the designer to tune out parasitics and optimize the circuit on the test bench at the expense of increased board area, higher component count, and a bulkier product for the consumer.

In this paper, we describe the design and optimization of a fully integrated power amplifier (PA) using only on-chip matching networks fabricated in a standard 0.6-μm n-well triple-metal digital CMOS process. All matching networks are implemented using low-Q spiral inductors. A critical component of the design methodology is a custom CAD tool that optimizes the PA design for maximum drain efficiency in the presence of lossy on-chip matching networks. The presentation is organized as follows: Section II reviews basic Class A, B, and C power amplifiers. Section III describes a modeling approach for integrated inductors that is applicable to CAD optimization; Section IV details the CAD tool that performs parasitic-aware optimization including lossy on-chip matching networks, bondwire and package parasitics, etc. Measured results are presented in Section V for a balanced CMOS PA designed and optimized using the CAD tool, and conclusions are given in Section VI.

II. CLASS A, B, AND C POWER AMPLIFIERS

In this section, we review Class A, B, and C power amplifiers, and highlight trade-offs between them. Class A PAs are highly linear, Class B PAs are less linear, and Class C PAs are even less so [8]. Shown in Fig. 1 is a basic two-stage linear RF PA which may be biased for operation in Class A, B, or C modes. The classes are distinguished by the fraction of the RF cycle over which the power transistor conducts: 100% corresponds to Class A, 50% to Class B, and less than 50% to Class C. Performance trade-offs among the various classes include efficiency, linearity, power gain, and output power. Linearity is quantified by the third-order intercept point (IP3), adjacent channel power, 1-dB compression point, or harmonic distortion. Drain efficiency is defined as

\[
\eta_D = \frac{P_{out}}{P_D}\] (1)
and power-added efficiency (PAE) as

\[\text{PAE} = \frac{P_{\text{RF, out}} - P_{\text{RF, in}}}{P_{\text{dc}}} \] \tag{2} \]

where \(P_{\text{RF, out}} \) is the RF output power, \(P_{\text{dc}} \) is the dc power drawn from \(V_{dd} \), and \(P_{\text{RF, in}} \) is the RF input power.

For classes A, B, and C, \(M_1 \) is operated as a transconductor rather than as a switch. Its drain current, \(i(\theta) \), is modeled as the net positive portion of a cosine wave of peak amplitude \(I_m \) superimposed upon a dc bias current \(I_{dc} \) that is negative and less than \(I_m \) for Class C, zero for Class B, and positive and greater than \(I_m \) for Class A [8].

\[i(\theta) = \begin{cases} I_m \cos \theta + I_{dc} & -y/2 \leq \theta \leq y/2 \\ 0 & \text{otherwise} \end{cases} \] \tag{3} \]

where \(y \) is the conduction angle. A Fourier series representation of the drain current is

\[i(\theta) = i_{dc} + \sum_{n=1} \hat{i}_n \cos n\theta \] \tag{4} \]

where

\[i_{dc} = \left(I_m \right) \left(\frac{\sin \frac{y}{2} + I_{dc} \cdot \frac{I_{dc}}{I_m}}{\frac{I_m}{\pi}} \right) \]
\[= \left(I_m \right) \left(\frac{\sin \frac{y}{2} - I_{dc} \cdot \frac{\cos \frac{y}{2}}{2}}{\frac{I_m}{\pi}} \right) \] \tag{5} \]

and

\[i_n(y) = \frac{I_m}{2\pi} \left(\frac{2}{n+1} \sin(n+1)\frac{y}{2} + \frac{2}{n-1} \sin(n-1)\frac{y}{2} \right) \]
\[+ \frac{2I_{dc}}{n\pi} \sin \frac{n}{2} \cdot \sin \frac{y}{2} \] \tag{6} \]

The relationship between \(I_{dc} \) and \(I_m \) for the conduction angle \(y/2 \) from (3) is used to simplify (5). The dc component is used to calculate the average power drawn from the supply. With an appropriately designed load network, only the fundamental component of drain current flows through the load resistor. Similarly, the inductor connected to the drain provides a path for the dc drain current, and offers high impedance to the signal current. Thus, a sinusoidal voltage is obtained at the output.

In order to obtain maximum voltage swing at the drain, a specific load resistance must be presented to the active device (Fig. 1). For a given conduction angle, \(y \), the product of this load resistance, \(R_{\text{opt}} \), and the peak instantaneous value of the fundamental component of the drain current, should equal the desired maximum voltage swing. Hence, \(R_{\text{opt}} \) can be obtained from

\[V_{dd} - V_{\text{dsat}} = i_1(y) \times R_{\text{opt}} \] \tag{7} \]

where \(i_1 \) is the amplitude of the fundamental current for conduction angle \(y \). With the optimum load impedance presented to the PA output, the maximum RF voltage swing of \(V_{dd} - V_{\text{dsat}} \) is obtained at the drain. Hence, the drain efficiency which is the ratio of the RF power [one-half of the product of the peak RF voltage swing and the peak RF current given by (6) for \(n = 1 \)] to the dc power [the product of the supply voltage and average current given by (5)] is easily derived as

\[\eta_D = \frac{V_{dd} - V_{\text{dsat}}}{V_{dd}} \cdot \frac{y - \sin y}{4 \left(\frac{y}{2} - \frac{1}{2} \cos \frac{y}{2} \right)} \] \tag{8} \]

Shown in Fig. 2(a) is drain efficiency versus conduction angle. Note that \(\eta_D \) increases as \(y \) decreases. Also evident is the Class A efficiency of 50% and Class B efficiency of 78.5% (neglecting \(V_{\text{dsat}} \)) corresponding to conduction angles of 360° and 180°, respectively. Implicit is the assumption that the peak output voltage swing is maximum (\(V_{dd} \)) for all values of \(y \). Consequently, the load resistance must be different for each value of \(y \). Thus, this curve does not represent how a PA with a fixed load resistance behaves if the conduction angle of the driver transistor is varied. It does give an upper limit for the drain efficiency achievable for a fixed optimum load resistance value. This efficiency is realized for a particular conduction angle for which the output voltage swing is maximum. An important implication for a PA with a fixed matching network optimized for a particular output power level is that its efficiency will degrade when operated at a reduced power level [Fig. 2(b)].
The increased efficiency at a reduced conduction angle is achieved at the expense of decreased maximum power output. In the limit, one can design a Class C PA to achieve a drain efficiency approaching 100%, but the corresponding output power approaches zero. The output power is expressed as

$$P_o = \frac{1}{2} v_o i_L = \frac{1}{2} (V_{dd} - V_{dsat}) \frac{I_m}{2\pi} (y - \sin y).$$

(9)

Shown in Fig. 3 is a plot of the output power (normalized to that of a Class A PA) as a function of y, again assuming that the output voltage swing is maximum (V_{dd}). Clearly, the increased efficiency from reducing y is achieved at the expense of reduced output power. Thus, there is a direct trade-off between drain efficiency and power output. As the conduction angle decreases, the harmonic content of the output signal also increases, illustrating a linearity-output power-efficiency trade-off. Fig. 4 shows a plot of the normalized ratio of the fundamental and the third harmonic components versus conduction angle. This plot indicates the behavior of IP3 as a function of conduction angle. A reduced conduction angle causes the fundamental component to decrease more rapidly than the third harmonic, resulting in a more nonlinear power amplifier. Depending upon the peak to average power ratio of the signal being amplified, the adjacent channel power performance also degrades as the conduction angle is reduced beyond a certain limit.

III. INTEGRATED INDUCTOR MODEL FOR CAD OPTIMIZATION

Shown in Fig. 5 is measured one-port s-parameter data for a square spiral inductor fabricated in a standard 0.6-μm triple-metal CMOS process. The 29-segment (7.25 turns) inductor formed on the metal3 layer was 15-μm wide with a 1.2-μm interturn spacing, and a 100-μm inner hole. The measured low-frequency inductance was 12.4 nH and the self-resonant frequency was 2.24 GHz. As expected, the inductor exhibits a low Q-factor because the measured impedance has a large resistive component. Since low-Q integrated inductors have a significant impact on the performance of PAs, accurate compact inductor models are essential to design and optimization.

To obtain accurate parametric inductor models, we have adopted the approaches of [9]–[11]. Each metal3 segment of the square spiral is modeled using a lumped equivalent circuit comprising a self-inductance, a series resistance equal to the dc resistance of the segment, a shunt capacitance between the segment and the substrate, an effective substrate loss resistance, and an interturn coupling capacitance. Positive and negative mutual inductance coupling terms between adjacent segments as well as segments on opposite sides of the spiral are included. The effects of corners and bends are assumed to be negligible at the frequencies of interest. Fig. 6 shows a five-segment planar inductor and its full-blown lumped element model. Although accurate, this model is computationally unattractive for use in CAD optimization which often requires tens or hundreds of thousands of iterations to find the optimum design. Thus, simulated annealing optimization over a range of inductor values necessitates the use of a compact inductor model (Fig. 7) that approximates the impedance versus frequency behavior of the full-blown model of Fig. 6. Note that while the parasitics
associated with the inductor’s inner and outer ports are not identical, a symmetrical compact model is found to approximate the inductor response adequately in the frequency range of interest. The value of L is obtained using Greenhouse’s method [9]. R_1 is the calculated dc series resistance of all segments forming the inductor. C_2 and R_2 are selected so that the compact model has the same Q and f_{max} as the full-blown model:

$$Q = \frac{1}{R_1 + R_2} \sqrt{\frac{L}{C_2}}$$

$$f_{\text{max}} \approx f_n = \frac{1}{2\pi \sqrt{LC_2}}.$$

By repeating this procedure, R_1, R_2, and C_2 are obtained as functions of L over a desired range of inductances. For the process and geometry parameters listed in Table I, the following polynomials were obtained for a floating inductor in the range of 1 nH to 18 nH:

$$R_1 = -0.0278L^2 + 1.741L + 2.3402$$

$$2C_2 = -0.0005L^2 + 0.0307L + 0.0468$$

$$R_2 = -0.0894L + 32.151 + 3.5064/L$$

where L is in nH, C_2 is in pF, and R_1 and R_2 are in ohms. Note that a similar set of equations with different coefficient values is required for inductors used with one end grounded.

Shown in Fig. 8(a) are both measured and simulated results for impedance versus frequency of a 6.18-nH 21-segment inductor using the circuit of Fig. 7 with values calculated using (12)–(14); the agreement is excellent up to about 2 GHz but poor near the first resonant frequency. The significant difference is attributed to substrate losses due to inductive coupling effects. In order to
maintain a simple compact model, we represent both inductive and capacitive substrate losses using an effective loss resistance

\[R_2 = K \left(\frac{\rho T}{W L} \right) \left(\frac{\rho}{2(W + L)} \right) \]

(15)

where \(\rho \) is the resistivity of the epitaxial layer, \(T \) is its thickness, \(W \) and \(L \) are the width and length of the inductor, and \(K \) is an empirical constant. The substrate resistance is initially calculated as the lateral spreading resistance [12], and then refined using the empirical factor \(K \) obtained from fitting the model to the measured one-port \(s \)-parameter values. With proper choice of \(K \), an excellent fit is achieved over a wide frequency range as shown in Fig. 8(b). In the next section, the parametric equations are incorporated into a CAD tool and used to predict inductor parasitics as the design space is explored during the optimization process.

IV. CAD OPTIMIZATION AND SIMULATED ANNEALING

In the analysis presented in Section II, it was assumed that the optimum load to be presented to the PA output was purely resistive as given by (7). The analysis ignored the output impedance of the power transistor(s). In practice, however, the optimum load impedance that the PA requires also uses a reactive component to tune out the output impedance of the PA. Traditionally, load pull techniques have been used to determine the large-signal load impedance required for a particular power transistor. This involves using tuners to present a series of impedances to the PA and measuring its efficiency, linearity, etc., corresponding to these impedances. Off-chip matching networks are then realized as part of the design flow to transform the standard load to the desired load impedance. Designing the optimal matching networks generally involves significant effort on the test bench; the matching network loss, its bandwidth, and the interactions on the PC board are some significant factors that determine RF performance. In the completely integrated PA design, available active and passive device models are used, along with transient simulations, to determine the large-signal load impedance required by the PA.

A. CAD for Integrated Power Amplifiers

The CAD tool described in this section mimics the process of load pull while simultaneously using on-chip lossy matching networks for the impedance transformation. While simple matching networks can be designed using lumped elements with the aid of a Smith chart, such an approach is not accurate enough for this case. The inductor and its associated parasitics can not be treated as distinct lumped elements because their values depend upon each other. Thus, if a given impedance value is required to be implemented by a matching network utilizing an on-chip inductor, an iterative approach needs to be taken to determine what inductance value, together with its associated parasitics, provides the impedance closest to the desired value. Even more significantly, the desired impedance value for optimum PAE is a function of the loss in the output matching network, as explained below. This process is too cumbersome for design by hand and requires a CAD tool.

The necessity of CAD optimization for integrated PAs can be justified by noting that an extremely significant difference between PAs using off-chip matching networks and fully integrated PAs is the impact of loss in the matching networks on the efficiency of the amplifier [13]. In the former case, the transistor efficiency primarily determines the overall PA efficiency as the matching network itself is low loss and can be assumed to transfer RF power from the transistor to the load with an efficiency approaching 100%. Therefore, the only consideration in the design of the matching network in this case is to transform the standard 50-\(\Omega \) load to a desired impedance. As a result, the determination of the optimum load impedance and the corresponding matching network design can be carried out as two distinct design steps. However, in the case of integrated PAs, the overall PA efficiency is determined by two components—the efficiency at which the power transistor(s) operate and the efficiency of the matching networks. Note that the efficiencies of the transistor and the matching networks are not independent of each other. The transistor efficiency, for a given technology, depends primarily upon the load impedance presented to it, and hence on the elements comprising the matching network. Obviously, the matching network elements also determine the efficiency with which the matching network delivers RF power from the transistor to the load. Thus, there is a trade-off between the impedance transformation properties of the on-chip matching networks and the overall efficiency of the power amplifier. It is possible that the benefit in efficiency obtained by operating the transistor most efficiently requires a matching network whose loss offsets any improvement in overall efficiency of the PA. Using the traditional approach of determining the optimum load impedance using load-pull and subsequently designing the matching network is not adequate for the realization of high-efficiency integrated CMOS PAs. The design of fully monolithic PAs requires simultaneous determination of the load impedance and the corresponding matching network realization, allowing the maximum degree of optimization by fully exploring the trade-off between the matching network loss and its impedance transformation. It is likely that an integrated matching network may not perform an optimum load impedance transformation, but still results in higher overall efficiency due to lower loss in it, compared to an optimal (with respect to impedance transformation) integrated matching network. Alternatively, for integrated PAs, an optimum load network is more appropriately defined as one which results in best overall efficiency, and not as a network which performs the impedance transformation necessarily dictated by conventional load-pull. The CAD tool described here is designed to find such an optimum matching network for integrated PAs.
B. Simulated-Annealing-Based CAD Tool

Simulated annealing is a heuristic [14], [15] which can be used to iteratively arrive at a solution to a problem while minimizing some cost function. Simulated annealing is not guaranteed to arrive at the best solution every time (hence it is a heuristic and not an algorithm). However, as the number of iterations increases, the probability of arriving at the best solution approaches unity. This algorithm is based on the metallurgical process of annealing. Annealing involves first heating a metal to a high temperature, and then allowing it to cool slowly at a controlled rate. Heating of the metal allows the atoms to rearrange into any one of numerous possible arrangements, and slow cooling allows these atoms to settle into a highly ordered structure. In simulated annealing, the attainment of the global optimum for an optimization problem is analogous to the formation of a highly ordered metal structure in the case of conventional annealing. Similar to its metallurgical counterpart, in this case too the “temperature” of the solution to the problem is gradually reduced and at lower temperatures, the system approaches the optimum solution (analogous to a highly ordered state in the metallurgical annealing of solids). This algorithm has the advantage that the probability of getting trapped in a local minima is low since at higher temperatures, the solution has enough energy to jump out of a local minimum. As the temperature is reduced, and if enough iterations are carried out at each temperature, the simulated annealing algorithm should settle down in the global minimum, rather than being trapped in a local minimum. A gradient algorithm like steepest descent only accepts solutions which result in improved cost, and therefore reaching the global minimum is dependent on the starting point, or initial conditions. In contrast, simulated annealing is likely to find the global minimum irrespective of the starting solution as it conditionally accepts solutions of higher cost from one iteration to the next. This property of simulated annealing makes it well suited to explore the trade-off in PA efficiency discussed previously to arrive at the optimum matching network.

As part of simulated-annealing-based optimization, a certain number of iterations are carried out at each temperature. Each iteration involves selecting a solution set (which may consist of values for the various passive elements, as well as package parasitic values corresponding to specific pins of the package) and evaluating the cost function which is the PAE in this case. The solution is accepted if it is better than the previously accepted solution, and conditionally accepted otherwise. This process is repeated for different temperature values until either a certain number of iterations are performed or the goal is met. The initial temperature, the cooling rate, and the number of iterations to be carried out at each temperature are determined by trying several values for these parameters. This tool has been implemented in Perl [16], and uses HSpice to evaluate the efficiency of the PA when delivering full output power. The algorithm is set up to run a certain number of iterations, and stops once that number is reached.

Fig. 9 illustrates the signal flow and control configuration of this CAD tool. The simulated-annealing algorithm, implemented in Perl, involves running transient analysis on the circuit to be optimized, reading the efficiency from the HSpice output file, deciding if the solution is to be accepted, generating a new solution set, modifying the HSpice netlist, and repeating the process. The accepted solutions, as well as the power output, efficiency, etc., are documented in a separate output file. The parametric inductor model equations described in Section II are also...
incorporated into the CAD tool. The implementation of the algorithm is fairly straightforward and can be tailored to interface with any simulation engine. This technique offers an attractive alternative to load-pull systems, and has the added advantage of allowing the design of optimized integrated matching networks. This eliminates the tuning on the PCB board and reduces the impact of board layout and coupling on RF performance.

V. CAD OPTIMIZED PA DESIGN

This simulated-annealing-based CAD tool was used to optimize the balanced PA output stage of Fig. 10 for maximum PAE. The goal was to design an integrated PA stage to output 100 mW into a 50-Ω load at 900 MHz and operate from a single 3-V supply. In order to realize the maximum degree of optimization, the determination of the appropriate load impedance and the design of a corresponding matching network were combined into a single step by means of the CAD tool. The inductor traditionally connected to the drain of the power transistor has been replaced by a pMOS load. An inductor in the drain of the PA output stage allows a large peak voltage swing (ideally equal to $V_{(g/d)}$) at the drain. This, in turn, makes it possible to deliver higher RF power, for a given
current, than if the signal swing were 0.5 V_{dd} (which would be the case if any other kind of load, like a pMOS transistor, were used). Thus, if the inductor is replaced by some other load, the RF power output decreases by $2 \times$ (assuming the same signal current). Therefore, the efficiency of the output stage is also reduced by $2 \times$. By applying the RF signal to the gate of both the nMOS and pMOS transistors [17], both devices contribute signal current, and if the impedance at the drain of the output stage transistors is low enough, this $2 \times$ current does not result in a signal swing greater than 0.5 V_{dd}. Further, the $2 \times$ increase in signal current does not require any additional dc current, so that the efficiency of the PA output stage will approach that of a stage with an ideal inductor load. In addition, a bridge T-coil is used as the input matching network [18].

The CAD tool was used to arrive at input and output matching networks by simultaneously optimizing their values for highest PAE for the amplifier, without imposing the additional constraint of optimizing for the input and output return loss. While the topology of the input matching network was fixed, π-network, high-pass and low-pass L-sections, and inductor topologies were investigated for output matching. Before optimization, the PA exhibited a drain efficiency of 36% using an L-section as an output match. After four days of optimization, a high-pass L-section was found for which the PA had an efficiency of 49%, while a simple shunt inductor used as the matching network achieved an efficiency of 57%. The π-section resulted in a maximum efficiency of only about 40%. The highest efficiency was obtained when using just a simple inductor as the output matching network. It is noteworthy that by utilizing the parasitics of the on-chip inductor, an impedance transformation that would ordinarily require at least an L-section is being performed. The histograms of Fig. 11 show the distributions of subsets of the solutions accepted by the simulated annealing CAD tool. It can be observed from these plots that the simulated annealing based CAD tool extensively explored the available solution space, finding matching networks which result in either high output power or high PAE [Fig. 11(a) and (b), respectively], as well as the more useful solutions resulting in high output power and high PAE [Fig. 11(c)].

Fig. 12 is a die photograph of the PA. The inductors, fabricated using only metal3, are 15-μm wide with 1.2-μm spacing between turns, and with a 100-μm square hole in the center [19]. This amplifier has been fabricated in the HP 0.6-μm triple-metal n-well digital CMOS process offered through the MOSIS service. The PA was tested using chip-on-board assembly. The only off-chip components were baluns used for single-ended-to-differential conversion, and vice versa. This was necessitated in order to interface the PA with the measurement equipment. Fig. 13 shows the test setup used. Figs. 14–16 show the measured results for the PA. The PA exhibits a peak drain efficiency of 55% at 900 MHz, at an output power level of 85 mW. Using two-port S-parameter measurements, the input return loss for the PA was measured as 6.15 dB, and the output return loss is 17.9 dB. The reverse isolation is 25.6 dB. The relatively high return loss is attributed to inaccuracies near 900 MHz in the
relevant in the case of high-loss matching networks only, as is the case in integrated RF CMOS ICs. This CAD tool has been used to optimize the efficiency of a balanced 85-mW CMOS PA operating at 900 MHz. Measured results validate the design and optimization process outlined in this work. It is demonstrated that in the design of RF CMOS PAs, significant benefits can be gained by incorporating parasitics into the parasitic-aware design process by means of CAD optimization.

ACKNOWLEDGMENT

The authors would like to thank E. Chase, B. Mack and E. Godshalk of Maxim Integrated Products, Incorporated, for test and measurement assistance, Dr. S. S. Taylor of Maxim Integrated Products for several helpful discussions, and R. Ziazhade of National Semiconductor Corporation for assistance with the Perl code. The authors would also like to thank Motorola Incorporated for supporting R. Gupta as a Ph.D intern during 1997.

REFERENCES

Ravi Gupta (S’90–A’99) received the B.E. degree in electrical engineering from Delhi College of Engineering, Delhi, India, in 1991, the M.S.E.E. degree from the University of Pittsburgh, Pittsburgh, PA, in 1993 and the Ph.D. degree in electrical and computer engineering from Oregon State University, Corvallis, OR, in 1998. His Ph.D. work dealt with computer-aided design and implementation of fully integrated silicon power amplifiers.

In summer and fall of 1997, he was an Intern with the Land Mobile Product Sector of Motorola, working on the design and development of upconverters and power amplifiers for two-way radios. Since July 1998, he has been with Maxim Integrated Products, Sunnyvale, CA, where he is designing front-end ICs for wireless products. His research interests include silicon ICs for communication channels.

Dr. Gupta is the recipient of the 1991 D. V. Kohli memorial gold medal from the University of Delhi.

Brian M. Ballweber (M’99) received the B.S. degree in electrical engineering and the M.S. degree in electrical and computer engineering from Oregon State University, Corvallis, OR, in 1996 and 1998, respectively.

In 1999, he joined the Motorola Wireless Integrated Technology Center, Austin, TX, where he designs RF analog and mixed-signal circuits for wireless communications.

David J. Allstot (S’72–M’78–SM’83–F’92) received the B.S. degree from the University of Portland, Portland, OR, the M.S.E.E. degree from Oregon State University, Corvallis, and the Ph.D. degree from the University of California, Berkeley.

He has held several industrial and academic positions and is currently the Boeing-Engveldt Chair Professor of Electrical Engineering at the University of Washington, Seattle. He has authored about 150 papers with students and colleagues and has advised about 60 M.S. and Ph.D. graduates.

Dr. Allstot is a member of Eta Kappa Nu and Sigma Xi. He was a co-recipient of the 1980 IEEE W.R.G. Baker Award, the 1995 IEEE Circuits and Systems Society Darlington Award, and the 1998 ISSCC B. Winner Award, and the recipient of several advising and teaching awards. He served as Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II and three times as Guest Editor of the IEEE JOURNAL OF SOLID-STATE CIRCUITS.
射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门ADS学习培训课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家…

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训教程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅…

课程网址：http://www.edatop.com/peixun/hfss/11.html
专注于微波、射频、天线设计人才的培养
网址：http://www.edatop.com

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波EDA网共同推出，是最全面、系统、专业的CST微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习CST微波工作的各项功能及其在微波射频、天线设计等领域设计应用。且购买该套装，还可超值赠送3个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含6门视频课程和1本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了HFSS天线设计的全过程。是国内最全面、最专业的HFSS天线设计课程，可以帮助您快速学习掌握如何使用HFSS设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含4门视频培训课程，培训将13.56MHz线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了13.56MHz线圈天线的工作原理、设计方法、设计考量以及使用HFSS和CST仿真分析线圈天线的具体操作，同时还介绍了13.56MHz线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握13.56MHz线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：

※ 成立于2004年，10多年丰富的行业经验，
※ 一直致力于专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波EDA网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com