Compact dual-band-notched UWB planar monopole antenna with modified SRR

To prevent interference problems due to existing nearby communication systems within an ultra-wideband (UWB) operating frequency, a compact dual-band-notched UWB antenna is presented. This antenna consists of a trapezoidal ground plane with a rectangle slot, a Y-shaped monopole used as the radiator, together with a modified complementary co-directional splitting resonator (SRR) etched on the radiation patch, which leads to the desired dual notched bands for lower and upper bands of the WLAN. Experimental results show that the designed antenna, with compact size of 24×25 mm, has a wide bandwidth covering $3.05–14.2$ GHz, realising dual notched bands of $5.14–5.36$ and $5.74–6.07$ GHz.

Introduction: Since the FCC permitted its civil application within the frequency band of $3.1–10.6$ GHz, UWB technology has gained a lot of popularity among researchers and wireless industries. As a result, several types of UWB antenna have emerged with its rapid growth, among which the printed monopole UWB antennas should be the most promising candidate for future applications, owing to their remarkably compact size, stable radiation characteristics, ease to build [1, 2], as well as the multitasking capability. However, given the challenges encountered in the UWB antenna design, such as system interference, UWB applications are necessary for the rejection of interference with some narrow bands, for instance, the existing WLAN covering the $5.15–5.35$ GHz and $5.725–5.825$ GHz.

To solve this problem, one can use a spatial filter above the antenna [3] or by loading rejection function designs of different types, different numbers at different spaces [4, 5]. But these existing techniques in extensive use require too much antenna space. Indeed, the complementary co-directional splitting resonator (SRR) is promising for UWB antennas to ensure multiple notched bands [6]. With its help, in this Letter a modified complementary co-directional SRR is proposed, which is etched on a Y-shaped monopole. Both dual-band-notched characteristics and compact size are achieved. The antenna has promising features, including good impedance matching performance over the whole operating frequency band, stable radiation patterns and flexible frequency notched function.

Antenna configuration and design: The geometry of the proposed antenna and a photograph of some fabricated prototypes are shown in Figs. 1a and b. The proposed antenna, with compact dimensions of 24×25 mm, is fabricated on a 1.6 mm-thickness FR4 substrate with relative permittivity of 4.5. A Y-shaped monopole is printed on the front side and a trapezoidal ground plane with a rectangle slot is on the back side. A modified complementary co-directional SRR etched on the Y-shaped radiator is selected to obtain adjacent dual notched bands for lower WLAN and upper WLAN here due to the weaker mutual coupling between inner and outer rings. The geometry of the modified complementary co-directional SRR is shown in Fig. 1c.

Results and discussion: The current distributions of the proposed antenna at 3.4, 5.2 and 5.8 GHz are illustrated in Fig. 2. At 3.4 GHz, current is mainly distributed on the edge of the Y-shaped monopole, which acts as the effective radiation part. However, when the antenna is working at the centre of the lower notched band near 5.2 GHz, we find that the current distributes along almost the whole modified complementary co-directional SRR, which determines the lower notched band. Meanwhile, the upper notched band near 5.8 GHz is ensured only by the inner part of the structure. It can be seen that the band-notched characteristic of the proposed antenna is realised by guiding the currents at the notch frequencies concentrated in the modified SRR. Because the currents along the modified SRR are in the opposite direction, the radiation fields generated by them are neutralised. The pair of symmetrical rectangle slots of the modified SRR is critical to achieving the desired notched bands, as
shows in Fig. 3a. Compared with the conventional SRR (without the pair of symmetrical rectangle slots), the modified SRR can greatly affect the strength and optimise the distance of the two notched bands. Particularly, both the centre frequency and the width of the upper rejected band are decreased while the peak rejection goes higher by increasing the ‘e2’. Fig. 3b shows simulated and measured VSWR against frequency for the proposed antenna. The simulated result of the reference antenna without notched characteristics is also shown for comparison. From the experimental results it can be seen that the antenna could provide sufficiently wide impedance bandwidth (VSWR < 2) covering 3.05–14.2 GHz with the dual notched bands. Measured dual notched bands are 5.14–5.36 GHz and 5.74–6.07 GHz, respectively, covering lower WLAN and upper WLAN successfully.

Figs. 4a and b show the radiation patterns at 3.6, 5.6 and 7.6 GHz. It can be observed that the antenna exhibits a nearly omnidirectional radiation pattern in the H-plane (xoz-plane) and a dipole-like radiation pattern in the E-plane (yoz-plane). In addition, the realised gain shown in Fig. 4c illustrates two significant antenna gain decreases at 5.14–5.36 GHz and 5.74–6.07 GHz, which validate the effect of the notched bands.

Conclusions: A novel compact planar monopole UWB antenna with dual notched bands is proposed. By loading the modified complementary co-directional SRR with different centres, narrower and stronger band-notched properties as well as small design space size for the frequency band rejection function are achieved. Furthermore, broad bandwidth and good monopole-like radiation patterns are obtained with a rather compact antenna size. Particularly, the measured results illustrate that the band ranging from 5.36 to 5.7 GHz can also be utilised with the proposed antenna, which is included in the rejected band of other ordinary WLAN band-notched antennas.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (60872029), the ‘863’ National Program of China (2008AA01Z206) and the Aerostatic Fund of China (2010018003).

E-mail: liliangirl@126.com

References
射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发一线的资深工程师发起成立，致力于专注于微波、射频、天线设计人才培养的实践。我们于2006年整合合并微波EDA网(www.mweda.com)，现已成为国内最大的微波射频和天线设计人才培养基地。成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评。在研发设计领域，易迪拓培训与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频和天线设计课程

射频和天线设计课程

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材。旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求...

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家...

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训课程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅...

课程网址：http://www.edatop.com/peixun/hfss/11.html
专注于微波、射频、天线设计人才的培养
网址：http://www.edatop.com

CST 学习培训课程套装
该培训套装由易迪拓培训联合微波 EDA 网共同推出，是最全面、系统、专业的 CST 微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送 3 个月免费学习答疑…

HFSS 天线设计培训课程套装
套装包含 6 门视频课程和 1 本图书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程，可以帮助您快速学习掌握如何使用 HFSS 设计天线，让天线设计不再难…
课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID 线圈天线设计培训课程套装
套装包含 4 门视频培训课程，培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作，同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：
※ 成立于 2004 年，10 多年丰富的行业经验，
※ 一直致力并专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：
※ 易迪拓培训官网：http://www.edatop.com
※ 微波 EDA 网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com