

A Wideband Compact Parallel-Strip 180° Wilkinson Power Divider for Push–Pull Circuitries

L. Chiu, Student Member, IEEE, T. Y. Yum, Student Member, IEEE, Q. Xue, Senior Member, IEEE, and C. H. Chan, Fellow, IEEE

Abstract—A Wilkinson power divider with a differential output implemented in parallel-strip-line (PSL) is proposed. Taking full advantages of the PSL technology and a three-stage cascaded design, more than 170% impedance and isolation bandwidths are obtained. Inherent to the PSL structure, the 180° differential output is frequency-independent. A class-B push–pull power amplifier employing the devised concept is designed, showing a peak efficiency of 44% over a 4-GHz bandwidth. Without exploiting any extra and external low-pass filters, the proposed design can produce startling second-harmonic suppressions (more than 50 dB) over the whole working dynamics and operated bandwidth.

Index Terms—Harmonic suppression, parallel-strip line (PSL), push–pull amplifier, wideband Wilkinson power divider.

I. INTRODUCTION

Demand and high efficiency has been increasing for both commercial and military applications. Power splitters and combiners show fundamental importance in microwave engineering and appear in most microwave and millimeter-wave systems. By employing a power divider/combiner, a balanced circuit can be implemented. A pair of devices forming a balanced circuit seems to be doubling the cost; however, the performance enhancement can be more than double. A power divider and combiner act as interconnection of the devices and are indispensable components in balanced circuits such as push–pull amplifiers and balanced mixers. The Wilkinson power divider and hybrid coupler are two typical circuits for these applications. Their design rules and characteristics have been documented in [1]. For some applications such as push–pull type circuitry, the 180° hybrid coupler is preferred to the Wilkinson power divider with delay line because the devices have to be fed 180° out-of-phase with high isolation and the hybrid coupler is very phase balanced. However, the hybrid coupler is electrically large compared with other component because of its one and a half guided wavelength circumference. We propose a Wilkinson power divider using parallel-strip line (PSL) with the push–pull characteristic, which tries to alleviate the tradeoff between the size, phase, and magnitude balances.

Manuscript received July 18, 2005; revised September 5, 2005. This work was supported by the Hong Kong Research Grant Council under Grants CityU1237/02E and CityU121905. The review of this letter was arranged by Associate Editor J.-G. Ma.

The authors are with the Wireless Communications Research Centre, City University of Hong Kong, Kowloon, Hong Kong, China (e-mail: 50246038@student.cityu.edu.hk).

Digital Object Identifier 10.1109/LMWC.2005.859972

II. 180° WILKINSON POWER DIVIDER/COMBINER

A conventional parallel-strip line (PSL) is a balanced transmission line which consists of two signal lines separated by a dielectric substrate. Unlike the microstrip line (MSL), PSL has inherent advantage of easy realization of balanced configuration which is suitable for balance designs, especially for high power applications. PSL is convenient for the mounting of shunt and series lump components. The symmetrical characteristic implies that we can swap the “ground” and “signal” lines freely in circuit designs and the flexibility of swapping leads to novel structures with low profile and performance enhancement. There have been many applications of PSL, e.g., double balanced type circuits such as mixers [2]. Double balanced type and balanced type circuits are employed frequently in high performance communications systems and they can be directly and easily fed by PSL. By employing PSL, the proposed Wilkinson power divider not only keeps its original wideband and magnitude balance characteristics but also achieves 180° phase balance property. The proposed power divider/combiner is integrated into a push–pull amplifier which is realized in Fig. 1.

Fig. 1. Photograph of the proposed push–pull power amplifier.

In this letter, a three-section wideband PSL 180° Wilkinson power divider is proposed. Multisection is an effective approach to extend the bandwidth of the Wilkinson power divider. The divider is a two-sided structure, which consists of three sections with each arm approximately a quarter wavelength long. Three shunt resistors are connected between these arms on each side of the dielectric as shown in Fig. 2. Therefore, the nulls in the return loss and isolation are separated but are close by in the
The design approach is based on that described in [3] but all characteristic impedance and substrate thickness should be divided by two due to the use of PSL. The power divider (combiner) is shown in the right (left)-hand side of Fig. 1. By tapering the lower (upper) line in Port 2 (3), the PSL-to-MSL transition which is used for feeding devices and measurement is formed [2]. The frequency independent 180° differential phase between Ports 2 and 3 is shown in Fig. 4.

III. NOVEL PUSH–PULL POWER AMPLIFIER

The push–pull power amplifier has been extensively studied because of its good performance. Many configurations realizing the push–pull characteristic have been reported, i.e., integrated antenna [4], complementary transistor pair [5], extended resonance technique [6], dielectric resonator based [7], and conventional transformer [8]. A power amplifier becomes highly nonlinear under the large signal condition and is characterized by nonlinear equations [9]. Equations (1) and (2) describe nonlinear characteristics of the two power amplifiers shown in Fig. 5

\[i_1 = g_1 v + g_2 v^2 + g_3 v^3 + \cdots \]
\[i_2 = g_1 v e^{-j\pi} + g_2 (v e^{-j\pi})^2 + g_3 (v e^{-j\pi})^3 + \cdots \]

where \(v \) is the input, \(i_1 \), and \(i_2 \) are the outputs and \(g_s \)s are constants which determines the transfer function of the amplifier. The two amplifiers are excited with 180° phase shift and the amplified signals are combined with the same phase shift. Equation (3) shows the output of the push–pull amplifier, the even order terms of \(i_{\text{total}} \) are eliminated, resulting in suppression of the second harmonic

\[i_{\text{total}} = i_1 + i_2 e^{-j\pi} = 2g_1 v + 2g_2 v^3 + 2g_3 v^5 + \cdots \]

However, for the push–pull amplifiers reported in [4], [6], and [7], the even harmonic components can never be suppressed because the operation bandwidth of push–pull characteristic circuitries is limited for providing an even-mode short circuit [8]. In [8], the push–pull characteristic is realized by a coil transformer which is very broadband at low frequency, e.g., audio band, and it covers both fundamental and second harmonic frequencies, implying at least a 67% 180° phase balance. In this
letter, the 180° Wilkinson power divider/combiner provides a wideband second harmonic suppression in microwave and millimeter-wave regimes.

A commercial NPN Silicon BJT transistor (Infineon BFP640) was used in our design, which has a typical transition frequency \(f_T \) of 25 GHz. Fig. 6 shows the small signal \(S \)-parameters of the proposed amplifier. No matching network is installed as it limits the bandwidth. Wideband suppression in the second harmonic is obtained in Fig. 7, showing an averaged 48-dB suppression. A single tone test is performed at 2.1 GHz as shown in Fig. 8. The proposed amplifier approaches a 44 % power added efficiency (PAE) and 1-dBm compression point.

IV. CONCLUSION

A PSL Wilkinson power divider providing an 180° dividing and combining circuitry has been proposed in this letter, demonstrating an application in push–pull circuitries for the first time. Unlike hybrid couplers and other baluns reported in the literature, our design eradicates the traditional frequency dependency of both the magnitude and phase responses, resulting in a new methodology for push–pull amplifier realization. The PSL circuitry shows a reconfigurable structure leading to high performance and size reduction. The proposed power divider can be extended to other balanced circuitries such as balance mixer, harmonic oscillator, and phase shifter, to name a few.

REFERENCES

射频和天线设计培训课程推荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于2006年整合合并微波EDA网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和ADS、HFSS等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：http://www.edatop.com/peixun/rfe/129.html

射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共30门视频培训课程和3本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求...

课程网址：http://www.edatop.com/peixun/rfe/110.html

ADS学习培训课程套装

该套装是迄今国内最全面、最权威的ADS培训教程，共包含10门ADS学习培训课程。课程是由具有多年ADS使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了ADS在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用ADS，迅速提升个人技术能力，把ADS真正应用到实际研发工作中去，成为ADS设计专家...

HFSS学习培训课程套装

该套课程套装包含了本站全部HFSS培训课程，是迄今国内最全面、最专业的HFSS培训课程套装，可以帮助您从零开始，全面深入学习HFSS的各项功能和在多个方面的工程应用。购买套装，更可超值赠送3个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的HFSS学习更加轻松顺畅...

课程网址：http://www.edatop.com/peixun/hfss/11.html
专注于微波、射频、天线设计人才的培养

网址：http://www.edatop.com

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波EDA网共同推出，是最全面、系统、专业的CST微波工作室培训课程套装，所有课程都由经验丰富的专家授课，视频教学，可以帮助您从零开始，全面系统地学习CST微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装，还可超值赠送3个月免费学习答疑…

HFSS 天线设计培训课程套装

套装包含6门视频课程和1本书，课程从基础讲起，内容由浅入深，理论介绍和实际操作讲解相结合，全面系统的讲解了HFSS天线设计的全过程。是国内最全面、最专业的HFSS天线设计课程，可以帮助您快速学习掌握如何使用HFSS设计天线，让天线设计不再难…

课程网址：http://www.edatop.com/peixun/hfss/122.html

13.56MHz NFC/RFID线圈天线设计培训课程套装

套装包含4门视频培训课程，培训将13.56MHz线圈天线设计原理和仿真设计实践相结合，全面系统地讲解了13.56MHz线圈天线的工作原理、设计方法、设计考量以及使用HFSS和CST仿真分析线圈天线的具体操作，同时还介绍了13.56MHz线圈天线匹配电路的设计和调试。通过该套课程的学习，可以帮助您快速学习掌握13.56MHz线圈天线及其匹配电路的原理、设计和调试…

我们的课程优势：

※ 成立于2004年，10多年丰富的行业经验，
※ 一直致力于专注于微波射频和天线设计工程师的培养，更了解该行业对人才的要求
※ 经验丰富的一线资深工程师讲授，结合实际工程案例，直观、实用、易学

联系我们：

※ 易迪拓培训官网：http://www.edatop.com
※ 微波EDA网：http://www.mweda.com
※ 官方淘宝店：http://shop36920890.taobao.com